Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Rep ; 13(1): 12482, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528159

RESUMEN

Numerous novel methods to detect foodborne pathogens have been extensively developed to ensure food safety. Among the important foodborne bacteria, Bacillus cereus was identified as a pathogen of concern that causes various food illnesses, leading to interest in developing effective detection methods for this pathogen. Although a standard method based on culturing and biochemical confirmative test is available, it is time- and labor-intensive. Alternative PCR-based methods have been developed but lack high-throughput capacity and ease of use. This study, therefore, attempts to develop a robust method for B. cereus detection by leveraging the highly specific pyrrolidinyl peptide nucleic acids (PNAs) as probes for a bead array method with multiplex and high-throughput capacity. In this study, PNAs bearing prolyl-2-aminocyclopentanecarboxylic acid (ACPC) backbone with groEL, motB, and 16S rRNA sequences were covalently coupled with three sets of fluorescently barcoded beads to detect the three B. cereus genes. The developed acpcPNA-based bead array exhibited good selectivity where only signals were detectable in the presence of B. cereus, but not for other species. The sensitivity of this acpcPNA-based bead assay in detecting genomic DNA was found to be 0.038, 0.183 and 0.179 ng for groEL, motB and 16S rRNA, respectively. This performance was clearly superior to its DNA counterpart, hence confirming much stronger binding strength of acpcPNA over DNA. The robustness of the developed method was further demonstrated by testing artificially spiked milk and pickled mustard greens with minimal interference from food metrices. Hence, this proof-of-concept acpcPNA-based bead array method has been proven to serve as an effective alternative nucleic acid-based method for foodborne pathogens.


Asunto(s)
Bacillus cereus , Ácidos Nucleicos de Péptidos , Bacillus cereus/genética , ARN Ribosómico 16S/genética , Reacción en Cadena de la Polimerasa/métodos , ADN , Microbiología de Alimentos
2.
Artículo en Inglés | MEDLINE | ID: mdl-37669453

RESUMEN

Introduction: Cannabidiol (CBD), a phytocannabinoid isolated from cannabis plants, is an interesting candidate for studying its anti-inflammatory effects, especially in the pre-clinical and animal models. Its anti-inflammatory effects, such as reduction of edema and arthritis, have been demonstrated in animal models. However, topical CBD administration requires further evaluation of CBD dosage and efficacy in animal models and clinical settings. Methods: This in vivo study investigated the anti-inflammatory effects of topical CBD administration in an animal model. Scientific experiments, including the formalin test, writhing test, carrageenan-induced edema, histopathological examination, and detection of various proinflammatory mediators, were performed. Results: The anti-inflammatory effects in vivo after inflammation induction, represented by decreased times of paw licking, degree of paw edema, and decreased writhing response, showed that 1% of tropical CBD use had significantly comparable or better anti-inflammatory effects when compared with tropical diclofenac, an anti-inflammatory agent. Moreover, the anti-inflammatory effects were significant compared with the placebo. In addition, the histopathological examination showed that topical CBD drastically reduced leukocyte infiltration and the degree of inflammation. This study also showed that the levels of various proinflammatory mediators in the plasma of mice treated with topical CBD did not differ from those treated with diclofenac. Conclusions: The topical administration of 1% CBD gel is a potentially effective candidate for an anti-inflammatory agent. Candidate for an anti-inflammatory agent.

3.
Front Microbiol ; 13: 1008817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36246228

RESUMEN

Specific antibodies are essential components of immunoassay, which can be applied for the detection of pathogens. However, producing an antibody specific to live bacterial pathogens by the classical method of immunizing animals with live pathogens can be impractical. Phage display technology is an effective alternative method to obtain antibodies with the desired specificity against selected antigenic molecules. In this study, we demonstrated the power of a microarray-based technique for obtaining specific phage-derived antibody fragments against Salmonella, an important foodborne pathogen. The selected phage-displayed antibody fragments were subsequently employed to develop a lateral flow test strip assay for the detection of live Salmonella. The test strips showed specificity to Salmonella Enteritidis without cross-reactivity to eight serovars of Salmonella or other bacteria strains. The test strip assay requires 15 min, whereas the conventional biochemical and serological confirmation test requires at least 24 h. The microarray screening technique for specific phage-based binders and the test strip method can be further applied to other foodborne pathogens.

4.
Talanta ; 233: 122540, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34215043

RESUMEN

While lateral flow immunoassay (LFIA) is a simple technique that offers a rapid, robust, user friendly, and point-of-care test, its capacity for multiplex detection is rather limited. This study therefore combined the multiplexity of microarray technique and the simple and rapid characteristics of LFIA to enable simultaneous and quantitative detection of five mycotoxins, namely aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FUMB1), T-2 toxin (T-2), and zearalenone (ZON). In addition, we have synthesized a novel extra-large Stokes shift and strong fluorescence organic compound to be used as a reporter molecule which can be detected under UV light without light filter requirement. Many parameters including microarray spotting buffer, blocking buffer, and concentrations of mycotoxin antibodies were optimized for the microarray LFIA (µLFIA) construction. With the optimal conditions, the µLFIA could accurately and quantitatively detect multiple mycotoxins at the same time. The limits of detection of AFB1, DON, FUMB1, T-2, and ZON were 1.3, 0.5, 0.4, 0.4, and 0.9 ppb, respectively. The recoveries of these five mycotoxins were 70.7%-119.5% and 80.4%-124.8% for intra-assay and inter-assay, respectively. Combining the advantages of the novel reporter molecule and the multiplex capability of µLFIA test, this system could simultaneously detect multiple mycotoxins in one sample with high specificity and high sensitivity. Moreover, this system presents a promising affordable point-of-care platform to detect other analytes as well.


Asunto(s)
Micotoxinas , Zearalenona , Aflatoxina B1/análisis , Contaminación de Alimentos/análisis , Inmunoensayo , Límite de Detección , Micotoxinas/análisis , Zearalenona/análisis
5.
PLoS One ; 15(8): e0237940, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32853255

RESUMEN

Acidovorax citrulli, a seedborne bacterium and quarantine pest, causes the devastating bacterial fruit blotch disease in cucurbit plants. Immunological assays such as ELISA are widely used in routine field inspections for this bacterium. However, to the best of our knowledge, none of the currently available monoclonal antibodies (MAbs) can detect all common A. citrulli strains. We therefore aimed to produce a panel of MAbs and to develop an ELISA-based method capable of detecting all A. citrulli strains. We used a high-throughput bead array technique to screen and characterize A. citrulli-specific MAbs produced from hybridoma clones. The hybridoma library was simultaneously screened against five A. citrulli strains (PSA, KK9, SQA, SQB and P) and the closely related bacterium, Delftia acidovorans. Three MAbs exhibiting different binding patterns to A. citrulli were used to develop an ELISA-based method called "double antibody pairs sandwich ELISA" (DAPS-ELISA). DAPS-ELISA employing mixtures of MAbs was able to specifically detect all 16 A. citrulli strains tested without cross-reactivity with other bacteria. By contrast, our previously developed MAb capture-sandwich ELISA (MC-sELISA) and a commercial test kit detected only 15 and 14 of 16 strains, respectively. The sensitivity of the DAPS-ELISA ranged from 5×105 to 1×106 CFU/mL, while those of the MC-sELISA and the commercial test kit ranged from 5×104 to 1×107 CFU/mL and 5×104 to 5×105 CFU/mL, respectively. DAPS-ELISA thus represents an alternative method enabling rapid, accurate, and inexpensive detection of all A. citrulli strains. The method can be applied to seed testing prior to planting as well as to routine field inspections.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Anticuerpos Monoclonales/inmunología , Comamonadaceae/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Serogrupo , Hibridomas , Límite de Detección
6.
J Virol Methods ; 247: 6-14, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28502647

RESUMEN

To employ a microsphere immunoassay (MIA) to simultaneously detect multiple plant pathogens (potyviruses, Watermelon silver mottle virus, Melon yellow spot virus, and Acidovorax avenae subsp. citrulli) in actual plant samples, several factors need to be optimized and rigorously validated. Here, a simple extraction method using a single extraction buffer was successfully selected to detect the four pathogens in various cucurbit samples (cucumber, cantaloupe, melon, and watermelon). The extraction method and assay performance were validated with inoculated and field cucurbit samples. The MIA showed 98-99% relative accuracy, 97-100% relative specificity and 92-100% relative sensitivity when compared to commercial ELISA kits and reverse transcription PCR. In addition, the MIA was also able to accurately detect multiple-infected field samples. The results demonstrate that one common extraction method for all tested cucurbit samples could be applied to detect multiple pathogens; avoiding the need for multiple protocols to be employed. This multiplex method can therefore be instrumental for high-throughput screening of multiple plant pathogens with many advantages such as a shorter assay time (2.5h) with single assay format, a lower cost of detection ($5 vs $19.7 for 4 pathogens/sample) and less labor requirement. Its multiplex capacity can also be expanded to detect up to 50 different pathogens upon the availability of specific antibodies.


Asunto(s)
Bacterias/aislamiento & purificación , Cucurbita/microbiología , Cucurbita/virología , Inmunoensayo/métodos , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Virus de Plantas/aislamiento & purificación , Microesferas , Sensibilidad y Especificidad
7.
Int J Food Microbiol ; 224: 47-54, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-26950032

RESUMEN

This study rigorously evaluated a previously developed immunobead array method to simultaneously detect three important foodborne pathogens, Campylobacter jejuni, Listeria monocytogenes, and Salmonella spp., for its actual application in routine food testing. Due to the limitation of the detection limit of the developed method, an enrichment step was included in this study by using Campylobacter Enrichment Broth for C. jejuni and Universal Pre-enrichment Broth for L. monocytogenes and Salmonella spp.. The findings showed that the immunobead array method was capable of detecting as low as 1CFU of the pathogens spiked in the culture media after being cultured for 24h for all three pathogens. The immunobead array method was further evaluated for its pathogen detection capabilities in ready-to-eat (RTE) and ready-to-cook (RTC) chicken samples and proven to be able to detect as low as 1CFU of the pathogens spiked in the food samples after being cultured for 24h in the case of Salmonella spp., and L. monocytogenes and 48 h in the case of C. jejuni. The method was subsequently validated with three types of chicken products (RTE, n=30; RTC, n=20; raw chicken, n=20) and was found to give the same results as the conventional plating method. Our findings demonstrated that the previously developed immunobead array method could be used for actual food testing with minimal enrichment period of only 52 h, whereas the conventional ISO protocols for the same pathogens take 90-144 h. The immunobead array was therefore an inexpensive, rapid and simple method for the food testing.


Asunto(s)
Bacterias/genética , Bacterias/aislamiento & purificación , Microbiología de Alimentos/métodos , Carne/microbiología , Animales , Campylobacter jejuni/genética , Campylobacter jejuni/aislamiento & purificación , Pollos , Medios de Cultivo , Escherichia coli O157/genética , Escherichia coli O157/aislamiento & purificación , Humanos , Límite de Detección , Listeria monocytogenes/genética , Listeria monocytogenes/aislamiento & purificación , Salmonella/genética , Salmonella/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA