Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Neuropathol Appl Neurobiol ; 48(1): e12756, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34312912

RESUMEN

AIMS: Perilipins are conserved proteins that decorate intracellular lipid droplets and are essential for lipid metabolism. To date, there is limited knowledge on their expression in human brain or their involvement in brain aging and neurodegeneration. The aim of this study was to characterise the expression levels of perilipins (Plin1-Plin5) in different cerebral areas from subjects of different age, with or without signs of neurodegeneration. METHODS: We performed real-time RT-PCR, western blotting, immunohistochemistry and confocal microscopy analyses in autoptic brain samples of frontal and temporal cortex, cerebellum and hippocampus from subjects ranging from 33 to 104 years of age, with or without histological signs of neurodegeneration. To test the possible relationship between Plins and inflammation, correlation analysis with IL-6 expression was also performed. RESULTS: Plin2, Plin3 and Plin5, but not Plin1 and Plin4, are expressed in the considered brain areas with different intensities. Plin2 appears to be expressed more in grey matter, particularly in neurons in all the areas analysed, whereas Plin3 and Plin5 appear to be expressed more in white matter. Plin3 seems to be expressed more in astrocytes. Only Plin2 expression is higher in old subjects and patients with early tauopathy or Alzheimer's disease and is associated with IL-6 expression. CONCLUSIONS: Perilipins are expressed in human brain but only Plin2 appears to be modulated with age and neurodegeneration and linked to an inflammatory state. We propose that the accumulation of lipid droplets decorated with Plin2 occurs during brain aging and that this accumulation may be an early marker and initial step of inflammation and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Perilipinas , Envejecimiento , Encéfalo/metabolismo , Humanos , Perilipina-2/metabolismo , Perilipinas/metabolismo
2.
Int J Mol Sci ; 22(9)2021 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-34065143

RESUMEN

In humans, injuries and diseases can result in irreversible tissue or organ loss. This well-known fact has prompted several basic studies on organisms capable of adult regeneration, such as amphibians, bony fish, and invertebrates. These studies have provided important biological information and helped to develop regenerative medicine therapies, but important gaps concerning the regulation of tissue and organ regeneration remain to be elucidated. To this aim, new models for studying regenerative biology could prove helpful. Here, the description of the cephalic tentacle regeneration in the adult of the freshwater snail Pomacea canaliculata is presented. In this invasive mollusk, the whole tentacle is reconstructed within 3 months. Regenerating epithelial, connective, muscular and neural components are already recognizable 72 h post-amputation (hpa). Only in the early phases of regeneration, several hemocytes are retrieved in the forming blastema. In view of quantifying the hemocytes retrieved in regenerating organs, granular hemocytes present in the tentacle blastema at 12 hpa were counted, with a new and specific computer-assisted image analysis protocol. Since it can be applied in absence of specific cell markers and after a common hematoxylin-eosin staining, this protocol could prove helpful to evidence and count the hemocytes interspersed among regenerating tissues, helping to unveil the role of immune-related cells in sensory organ regeneration.


Asunto(s)
Hemocitos/citología , Hemocitos/metabolismo , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Regeneración , Caracoles/fisiología , Animales , Recuento de Células , Procesamiento de Imagen Asistido por Computador/métodos , Inmunohistoquímica/métodos , Especificidad de Órganos
3.
Proteomics ; 19(4): e1800314, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30537342

RESUMEN

Pomacea canaliculata is a freshwater snail with interesting biological features that include invasiveness, human parasite hosting, and adult regeneration. Its immune system may represent the target for strategies aimed at controlling the spread of the snail population and its hosting of the human parasite Angiostrongylus cantonensis. Moreover, immune functions likely have a role in the snail's ability to wound heal and regenerate. Despite its importance in multiple processes, very little is known about the molecular basis of P. canaliculata immunity. Aiming to contribute to filling this gap, the ultrastructure of circulating hemocytes in healthy snails is studied and the first proteomic analysis of these cells is performed, evidencing 83 unique proteins, 96% of which have identifiable homologs in other species. Fifteen proteins are retrieved as potentially involved in immune-related signaling pathways, such as hemocyanin, C1q-like protein, and HSP90 together with cytoskeleton and cytoskeleton-related proteins involved in cell motility and membrane dynamics. This first proteome study on non-stimulated hemocytes provides a valid reference for future investigations on the molecular changes under stressful circumstances, like pathogen exposure, wounding, or environmental changes.


Asunto(s)
Gastrópodos/metabolismo , Hemocitos/metabolismo , Proteómica , Animales , Gastrópodos/química , Hemocitos/química
4.
Horm Behav ; 88: 41-44, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27984033

RESUMEN

The comparison between immune and neuroendocrine systems in vertebrates and invertebrates suggest an ancient origin and a high degree of conservation for the mechanisms underlying the integration between immune and stress responses. This suggests that in both vertebrates and invertebrates the stress response involves the integrated network of soluble mediators (e.g., neurotransmitters, hormones and cytokines) and cell functions (e.g., chemotaxis and phagocytosis), that interact with a common objective, i.e., the maintenance of body homeostasis. During evolution, several changes observed in the stress response of more complex taxa could be the result of new roles of ancestral molecules, such as ancient immune mediators may have been recruited as neurotransmitters and hormones, or vice versa. We review older and recent evidence suggesting that immune and neuro-endocrine functions during the stress response were deeply intertwined already at the dawn of multicellular organisms. These observations found relevant reflections in the demonstration that immune cells can transdifferentiate in olfactory neurons in crayfish and the recently re-proposed neural transdifferentiation in humans.


Asunto(s)
Evolución Biológica , Sistema Inmunológico/metabolismo , Invertebrados/metabolismo , Moluscos/metabolismo , Sistemas Neurosecretores/metabolismo , Animales , Transdiferenciación Celular/fisiología , Homeostasis/fisiología , Sistema Inmunológico/inmunología , Invertebrados/inmunología , Moluscos/inmunología , Sistemas Neurosecretores/inmunología
5.
Fish Shellfish Immunol ; 38(1): 56-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24636857

RESUMEN

Pomacea canaliculata is a freshwater gastropod considered an invasive pest by several European, North American and Asiatic countries. This snail presents a considerable resistance to pollutants and may successfully face stressful events. Thanks to the unusual possibility to perform several hemolymph collections without affecting its survival, P. canaliculata is a good model to study the hematopoietic process and the hemocyte turnover in molluscs. Here we have analyzed the effects of repeated hemolymph withdrawals on circulating hemocyte populations and pericardial organs, i.e., the heart, the main vessels entering and leaving the heart and the ampulla, of P. canaliculata. Our experiments revealed that the circulating hemocyte populations were maintained constant after 3 collections performed in 48 h. The tissue organization of the heart and the vessels remained unaltered, whereas the ampulla buffered the effects of hemolymph collections acting as hemocyte reservoir, and its original organization was progressively lost by the repeated hemolymph withdrawals. The hematopoietic tissue of P. canaliculata was evidenced here for the first time. It is positioned within the pericardial cavity, in correspondence of the principle veins. Mitoses within the hematopoietic tissue were not influenced by hemolymph collections, and circulating hemocytes never presented mitotic activity.


Asunto(s)
Hemocitos/fisiología , Hemolinfa/citología , Hemolinfa/fisiología , Caracoles/citología , Caracoles/fisiología , Animales , Hematopoyesis/fisiología , Especies Introducidas
6.
Fish Shellfish Immunol ; 34(5): 1260-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23422816

RESUMEN

Molluscs are invertebrates of great relevance for economy, environment and public health. The numerous studies on molluscan immunity and physiology registered an impressive variability of circulating hemocytes. This study is focused on the first characterization of the circulating hemocytes of the freshwater gastropod Pomacea canaliculata, a model for several eco-toxicological and parasitological researches. Flow cytometry analysis identified two populations of hemocytes on the basis of differences in size and internal organization. The first population contains small and agranular cells. The second one displays major size and a more articulated internal organization. Light microscopy evidenced two principal morphologies, categorized as Group I (small) and II (large) hemocytes. Group I hemocytes present the characteristics of blast-like cells, with an agranular and basophilic cytoplasm. Group I hemocytes can adhere onto a glass surface but seem unable to phagocytize heat-inactivated Escherichia coli. The majority of Group II hemocytes displays an agranular cytoplasm, while a minority presents numerous granules. Agranular cytoplasm may be basophilic or acidophilic. Granules are positive to neutral red staining and therefore acidic. Independently from their morphology, Group II hemocytes are able to adhere and to engulf heat-inactivated E. coli. Transmission electron microscopy analysis clearly distinguished between agranular and granular hemocytes and highlighted the electron dense content of the granules. After hemolymph collection, time-course analysis indicated that the Group II hemocytes are subjected to an evident dynamism with changes in the percentage of agranular and granular hemocytes. The ability of circulating hemocytes to quickly modify their morphology and stainability suggests that P. canaliculata is endowed with highly dynamic hemocyte populations able to cope with rapid environmental changes as well as fast growing pathogens.


Asunto(s)
Caracoles/citología , Caracoles/inmunología , Animales , Gránulos Citoplasmáticos/inmunología , Escherichia coli/inmunología , Citometría de Flujo , Hemocitos/citología , Hemocitos/inmunología , Hemocitos/ultraestructura , Microscopía Electrónica de Transmisión , Fagocitosis , Caracoles/ultraestructura , Factores de Tiempo
7.
Antioxidants (Basel) ; 12(6)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371996

RESUMEN

Reactive oxygen species (ROS) are volatile and short-lived molecules playing important roles in several physiological functions, including immunity and physiological adaptation to unsuitable environmental conditions. In an eco-immunological view, the energetic costs associated with an advantageous metabolic apparatus able to cope with wide changes in environmental parameters, e.g., temperature range, water salinity or drought, could be further balanced by the advantages that this apparatus may also represent in other situations, e.g., during the immune response. This review provides an overview of molluscs included in the IUCN list of the worst invasive species, highlighting how their relevant capacity to manage ROS production during physiologically challenging situations can also be advantageously employed during the immune response. Current evidence suggests that a relevant capacity to buffer ROS action and their damaging consequences is advantageous in the face of both environmental and immunological challenges, and this may represent a trait for potential invasiveness. This should be considered in order to obtain or update information when investigating the potential of the invasiveness of emerging alien species, and also in view of ongoing climate changes.

8.
Biology (Basel) ; 12(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37508422

RESUMEN

After amputation, granular hemocytes infiltrate the blastema of regenerating cephalic tentacles of the freshwater snail Pomacea canaliculata. Here, the circulating phagocytic hemocytes were chemically depleted by injecting the snails with clodronate liposomes, and the effects on the cephalic tentacle regeneration onset and on Pc-Hemocyanin, Pc-transglutaminase (Pc-TG) and Pc-Allograft Inflammatory Factor-1 (Pc-AIF-1) gene expressions were investigated. Flow cytometry analysis demonstrated that clodronate liposomes targeted large circulating hemocytes, resulting in a transient decrease in their number. Corresponding with the phagocyte depletion, tentacle regeneration onset was halted, and it resumed at the expected pace when clodronate liposome effects were no longer visible. In addition to the regeneration progress, the expressions of Pc-Hemocyanin, Pc-TG, and Pc-AIF-1, which are markers of hemocyte-mediated functions like oxygen transport and immunity, clotting, and inflammation, were modified. After the injection of clodronate liposomes, a specific computer-assisted image analysis protocol still evidenced the presence of granular hemocytes in the tentacle blastema. This is consistent with reports indicating the large and agranular hemocyte population as the most represented among the professional phagocytes of P. canaliculata and with the hypothesis that different hemocyte morphologies could exert diverse biological functions, as it has been observed in other invertebrates.

9.
Cell Tissue Res ; 350(3): 491-502, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23053052

RESUMEN

At the moment of parasitization by another insect, the host Heliothis larva is able to defend itself by the activation of humoral and cellular defenses characterized by unusual reactions of hemocytes in response to external stimuli. Here, we have combined light and electron microscopy, staining reactions, and immunocytochemical characterization to analyze the activation and deactivation of one of the most important immune responses involved in invertebrates defense, i.e., melanin production and deposition. The insect host/parasitoid system is a good model to study these events. The activated granulocytes of the host insect are a major repository of amyloid fibrils forming a lattice in the cell. Subsequently, the exocytosed amyloid lattice constitutes the template for melanin deposition in the hemocel. Furthermore, cross-talk between immune and neuroendocrine systems mediated by hormones, cytokines, and neuromodulators with the activation of stress-sensoring circuits to produce and release molecules such as adrenocorticotropin hormone, alpha melanocyte-stimulating hormone, and neutral endopeptidase occurs. Thus, parasitization promotes massive morphological and physiological modifications in the host insect hemocytes and mimics general stress conditions in which phenomena such as amyloid fibril formation, melanin polymerization, pro-inflammatory cytokine production, and activation of the adrenocorticotropin hormone system occur. These events observed in invertebrates are also reported in the literature for vertebrates, suggesting that this network of mechanisms and responses is maintained throughout evolution.


Asunto(s)
Mariposas Nocturnas/inmunología , Mariposas Nocturnas/parasitología , Hormona Adrenocorticotrópica/metabolismo , Amiloide/biosíntesis , Animales , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/ultraestructura , Larva , Melaninas/biosíntesis , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/ultraestructura , Avispas/inmunología
10.
Cytokine ; 58(2): 280-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22386007

RESUMEN

The innate immunity of Drosophila melanogaster is based on cellular and humoral components. Drosophila Helical factor (Hf), is a molecule previously discovered using an in silico approach and whose expression is controlled by the immune deficiency (Imd) pathway. Here we present evidence demonstrating that Hf is an inducible protein constitutively produced by the S2 hemocyte-derived cell line. Hf expression is stimulated by bacterial extracts that specifically trigger the Imd pathway. In absence of any bacterial challenge, the recombinant form of Hf can influence the expression of the antimicrobial peptides (AMPs) defensin but not drosomycin. These data suggest that in vitro Hf is an inducible and immune-regulated factor, with functions comparable to those of secreted vertebrate cytokines.


Asunto(s)
Citocinas/fisiología , Proteínas de Drosophila/fisiología , Animales , Secuencia de Bases , Línea Celular , Cartilla de ADN , Proteínas de Drosophila/inmunología , Drosophila melanogaster , Reacción en Cadena de la Polimerasa
11.
Gen Comp Endocrinol ; 174(1): 1-4, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21781968

RESUMEN

The complexity of the anatomical distribution and functions of adipose tissue (AT) has been rarely analyzed in an evolutionary perspective. From yeast to man lipid droplets are stored mainly in the form of triglycerides in order to provide energy during periods when energy demands exceed caloric intake. This simple scenario is in agreement with the recent discovery of a highly conserved family of proteins for fat storage in both unicellular and multicellular organisms. However, the evolutionary history of organs such as the fat body in insects, playing a role in immunity and other functions besides energy storage and thermal insulation, and of differently distributed subtypes of AT in vertebrates is much less clear. These topics still await a systematic investigation using up-to-date technologies and approaches that would provide information useful for understanding the role of different AT subtypes in normal/physiological conditions or in metabolic pathologies of humans.


Asunto(s)
Tejido Adiposo/metabolismo , Evolución Biológica , Tejido Adiposo Blanco/metabolismo , Animales , Humanos , Invertebrados/clasificación , Invertebrados/metabolismo , Vertebrados/clasificación , Vertebrados/metabolismo
12.
J Insect Sci ; 11: 138, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22233481

RESUMEN

In this study, five morphological types of circulating hemocytes were recognized in the hemolymph of the adult sunn pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), namely prohemocytes, plasmatocytes, granulocytes, adipohemocytes, and oenocytoids. The effects of the secondary metabolites of the entomopathogenic fungus Beauveria bassiana on cellular immune defenses of Eurygaster integriceps were investigated. The results showed that the fungal secondary metabolites inhibited phagocytic activity of E. integriceps hemocytes and hampered nodule formation. A reduction of phenoloxidase activity was also observed. The data suggest that B. bassiana produce secondary metabolites that disable several immune mechanisms allowing the fungus to overcome and then kill its host. This characteristic makes B. bassiana a promising model for biological control of insect pests such as E. integriceps.


Asunto(s)
Beauveria/patogenicidad , Hemípteros/inmunología , Hemocitos/citología , Interacciones Huésped-Patógeno , Animales , Catecol Oxidasa/metabolismo , Precursores Enzimáticos/metabolismo , Hemípteros/enzimología , Hemípteros/microbiología , Inmunidad Celular , Fagocitosis , Esporas Fúngicas/patogenicidad
13.
Biology (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681148

RESUMEN

Pomacea canaliculata is a freshwater gastropod known for being both a highly invasive species and one of the possible intermediate hosts of the mammalian parasite Angiostrongylus cantonensis. With the aim of providing new information concerning P. canaliculata biology and adaptability, the first proteome of the ampulla, i.e., a small organ associated with the circulatory system and known as a reservoir of nitrogen-containing compounds, was obtained. The ampullar proteome was derived from ampullae of control snails or after exposure to a nematode-based molluscicide, known for killing snails in a dose- and temperature-dependent fashion. Proteome analysis revealed that the composition of connective ampulla walls, cell metabolism and oxidative stress response were affected by the bio-pesticide. Ultrastructural investigations have highlighted the presence of rhogocytes within the ampullar walls, as it has been reported for other organs containing nitrogen storage tissue. Collected data suggested that the ampulla may belong to a network of organs involved in controlling and facing oxidative stress in different situations. The response against the nematode-based molluscicide recalled the response set up during early arousal after aestivation and hibernation, thus encouraging the hypothesis that metabolic pathways and antioxidant defences promoting amphibiousness could also prove useful in facing other challenges stimulating an oxidative stress response, e.g., immune challenges or biocide exposure. Targeting the oxidative stress resistance of P. canaliculata may prove helpful for increasing its susceptibility to bio-pesticides and may help the sustainable control of this pest's diffusion.

14.
Cell Biol Int ; 34(11): 1091-4, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20939830

RESUMEN

Cell motility, cell migration and phagocytosis are distinct, though frequently sequential, processes. They are fundamental for the maintenance of homoeostasis in single cells as well as in pluricellular organisms. Like vertebrates, invertebrate immune functions are strictly dependent on cell motility, chemotaxis and phagocytosis. Several comparative immunobiology experiments have tested the effects of mammalian factors on cell migration and phagocytic activity in invertebrate immune-competent cells. The discrepancies that were found suggest various hypotheses, e.g. species-specific reactions to heterologous factors. Here, we reconsider data concerning the effects of POMC (proopiomelanocortin)-derived peptides, cytokines and growth factors on molluscan immunocytes in the light of recent findings that also encompass the effects of experimental conditions.


Asunto(s)
Evolución Biológica , Movimiento Celular , Quimiotaxis , Moluscos/fisiología , Fagocitosis/fisiología , Animales , Quimiotaxis/inmunología , Citocinas/metabolismo , Homeostasis , Mamíferos , Proopiomelanocortina/metabolismo
15.
Bioessays ; 30(9): 868-74, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18693265

RESUMEN

Ecological Immunology assumes that immunological defenses must be minimized in terms of cost (energy expenditure). To reach this goal, a complex and still largely unexplored strategy has evolved to assure survival. From invertebrates to vertebrates, an integrated immune-neuroendocrine response appears to be crucial for the hierarchical redistribution of resources within the body according to the specific ecological demands. Thus, on the basis of experimental data on the intimate relationship between stress and immune responses that has been maintained during evolution, we argue that a broader perspective based on the integration of immune and neuroendocrine responses should be adopted to describe the comprehensive strategy that the body utilizes to adapt to dynamic environmental conditions. We discuss the hypothesis that a bow-tie architecture might be suitable to describe the variety of immune-neuroendocrine inputs that continuously target cells and organs while, at the same time, fulfilling the basic requirement of minimizing the cost of immune-neuroendocrine responses. Bow-tie architectures are able to convert a variety of stimuli (fan in) into a wide range of fine-tuned responses (fan out) by passing through the integrating activity of a core (knot) constituted by a limited number of elements. Finally, we argue that the ecologically negotiated immune-neuroendocrine strategies may have deleterious effects in the post-reproductive period of life when, at least in humans, chronic, low-grade, systemic inflammation develops, in accordance with the antagonistic pleiotropy theory of aging.


Asunto(s)
Ecología , Neuroinmunomodulación/fisiología , Sistemas Neurosecretores/fisiología , Envejecimiento/inmunología , Animales , Evolución Biológica , Humanos , Modelos Inmunológicos , Estrés Psicológico/inmunología , Timo/inmunología
16.
Mar Drugs ; 8(3): 658-77, 2010 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-20411120

RESUMEN

In this review, we focus on processes, organs and systems targeted by the marine toxins yessotoxin (YTX), okadaic acid (OA) and palytoxin (PTX). The effects of YTX and their basis are analyzed from data collected in the mollusc Mytilus galloprovincialis, the annelid Enchytraeus crypticus, Swiss CD1 mice and invertebrate and vertebrate cell cultures. OA and PTX, two toxins with a better established mode of action, are analyzed with regard to their effects on development. The amphibian Xenopus laevis is used as a model, and the Frog Embryo Teratogenesis Assay-Xenopus (FETAX) as the experimental protocol.


Asunto(s)
Acrilamidas/toxicidad , Anélidos/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Mytilus/efectos de los fármacos , Ácido Ocadaico/toxicidad , Oxocinas/toxicidad , Animales , Línea Celular , Venenos de Cnidarios , Embrión no Mamífero/efectos de los fármacos , Ratones , Venenos de Moluscos , Xenopus laevis/embriología
17.
Artículo en Inglés | MEDLINE | ID: mdl-19879954

RESUMEN

Recent advances in comparative immunology have established that invertebrates produce hypervariable molecules probably related to immunity, suggesting the possibility of raising a specific immune response. "Priming" and "tailoring" are terms now often associated with the invertebrate innate immunity. Comparative immunologists contributed to eliminate the idea of a static immune system in invertebrates, making necessary to re-consider the evolutive meaning of immunological memory of vertebrates. If the anticipatory immune system represents a maximally efficient immune system, why can it be observed only in vertebrates, especially in consideration that molecular hypervariability exists also in invertebrates? Using well-established theories concerning the evolution of the vertebrate immunity as theoretical basis we analyze from an Eco-immunology-based perspective why a memory-based immune system may have represented an evolutive advantage for jawed vertebrates. We hypothesize that for cold-blooded vertebrates memory represents a complimentary component that flanks the robust and fundamental innate immunity. Conversely, immunological memory has become indispensable and fully exploited in warm-blooded vertebrates, due to their stable inner environment and high metabolic rate, respectively.


Asunto(s)
Inmunidad Innata , Sistemas Neurosecretores/fisiología , Vertebrados/inmunología , Vertebrados/fisiología , Animales , Evolución Biológica , Sistema Inmunológico/inmunología , Sistema Inmunológico/fisiología , Invertebrados/inmunología , Invertebrados/fisiología , Especificidad de la Especie
18.
Biology (Basel) ; 9(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143352

RESUMEN

The spreading of alien and invasive species poses new challenges for the ecosystem services, the sustainable production of food, and human well-being. Unveiling and targeting the immune system of invasive species can prove helpful for basic and applied research. Here, we present evidence that a nematode (Phasmarhabditis hermaphrodita)-based molluscicide exerts dose-dependent lethal effects on the golden apple snail, Pomacea canaliculata. When used at 1.7 g/L, this biopesticide kills about 30% of snails within one week and promotes a change in the expression of Pc-bpi, an orthologue of mammalian bactericidal/permeability increasing protein (BPI). Changes in Pc-bpi expression, as monitored by quantitative PCR (qPCR), occurred in two immune-related organs, namely the anterior kidney and the gills, after exposure at 18 and 25 °C, respectively. Histological analyses revealed the presence of the nematode in the snail anterior kidney and the gills at both 18 and 25 °C. The mantle and the central nervous system had a stable Pc-bpi expression and seemed not affected by the nematodes. Fluorescence in situ hybridization (FISH) experiments demonstrated the expression of Pc-bpi in circulating hemocytes, nurturing the possibility that increased Pc-bpi expression in the anterior kidney and gills may be due to the hemocytes patrolling the organs. While suggesting that P. hermaphrodita-based biopesticides enable the sustainable control of P. canaliculata spread, our experiments also unveiled an organ-specific and temperature-dependent response in the snails exposed to the nematodes. Overall, our data indicate that, after exposure to a pathogen, the snail P. canaliculata can mount a complex, multi-organ innate immune response.

19.
Cell Tissue Res ; 336(1): 107-18, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19184113

RESUMEN

Autophagy is an evolutionary ancient process based on the activity of genes conserved from yeast to metazoan taxa. Whereas its role as a mechanism to provide energy during cell starvation is commonly accepted, debate continues about the occurrence of autophagy as a means specifically activated to achieve cell death. The IPLB-LdFB insect cell line, derived from the larval fat body of the lepidoptera Lymantria dispar, represents a suitable model to address this question, as both autophagic and apoptotic cell death can be induced by various stimuli. Using morphological and functional approaches, we have observed that the culture medium conditioned by IPLB-LdFB cells committed to death by the ATPase inhibitor oligomycin A stimulates autophagic cell death in untreated IPLB-LdFB cells. Moreover, proteomic analysis of the conditioned media suggests that, in IPLB-LdFB cells, oligomycin A promotes a shift towards lipid metabolism, increases oxidative stress and specifically directs the cells towards autophagic activity.


Asunto(s)
Autofagia/fisiología , Mariposas Nocturnas/metabolismo , Mariposas Nocturnas/fisiología , Adenosina Trifosfato/metabolismo , Animales , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo Condicionados/farmacología , Mariposas Nocturnas/citología , Proteómica
20.
Cytokine ; 44(2): 269-74, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18926718

RESUMEN

Invertebrate innate immunity relies on both cellular and humoral components. Among humoral factors, there is less information on soluble molecules able to act as signals during the immune response (i.e. cytokines). In Drosophila melanogaster, the cytokine Unpaired (Upd)-3, is known to activate the JAK/STAT pathway, but it is still not clear which molecules and pathways are responsible for its induction and secretion. It has been proposed that highly chemotactic factors may increase the expression of upd-3. In this respect, we have studied the effects of the chemotactic human recombinant (hr) interleukin (IL)-8 on the immune functions of Drosophila SL2 macrophage-like cells. The hrIL-8 increases the percentage of phagocytic cells with a specific timing and enhances the expression of the cytokine, upd-3, as well as that of the putative cytokine Drosophila helical factor (dhf). The antimicrobial peptides defensin, cecropin A1 and diptericin, are all influenced in their expression by the human chemokine, while hrIL-8 leaves unaffected the expression of drosomycin, i.e. the antimicrobial peptide more strictly connected with the Toll pathway. Similar effects to those registered for hrIL-8 are also provoked by a specific activator of the Imd pathway, i.e. the Escherichia coli peptidoglycan. RNAi experiments demonstrated that the silencing of the Imd pathway-associated kinase dTAK1, leaves unaffected the induction of upd-3, while it completely abolishes the effects of hrIL-8-on the expression of dhf. Our data suggest that the Imd pathway is not fundamental in regulating the levels of upd-3, whereas it controls the expression of the putative cytokine dhf.


Asunto(s)
Proteínas de Drosophila/inmunología , Drosophila melanogaster/inmunología , Inmunidad Innata/fisiología , Interleucina-8/inmunología , Factores de Transcripción/inmunología , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/inmunología , Línea Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expresión Génica , Humanos , Interleucina-8/genética , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Fagocitosis/fisiología , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA