Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Neuron ; 57(3): 393-405, 2008 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-18255032

RESUMEN

Deletion of serine 63 from P0 glycoprotein (P0S63del) causes Charcot-Marie-Tooth 1B neuropathy in humans, and P0S63del produces a similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum and fails to be incorporated into myelin. Here we report that P0S63del is misfolded and Schwann cells mount a consequential canonical unfolded protein response (UPR), including expression of the transcription factor CHOP, previously associated with apoptosis in ER-stressed cells. UPR activation and CHOP expression respond dynamically to P0S63del levels and are reversible but are associated with only limited apoptosis of Schwann cells. Nonetheless, Chop ablation in S63del mice completely rescues their motor deficit and reduces active demyelination 2-fold. This indicates that signaling through the CHOP arm of the UPR provokes demyelination in inherited neuropathy. S63del mice also provide an opportunity to explore how cells can dysfunction yet survive in prolonged ER stress-important for neurodegeneration related to misfolded proteins.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedades Desmielinizantes/etiología , Regulación de la Expresión Génica/fisiología , Actividad Motora/genética , Transducción de Señal/genética , Factor de Transcripción CHOP/deficiencia , Factores de Edad , Animales , Animales Recién Nacidos , Bromodesoxiuridina/metabolismo , Células CHO , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Cricetinae , Cricetulus , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Regulación de la Expresión Génica/genética , Etiquetado Corte-Fin in Situ , Ratones , Ratones Transgénicos , Mutación/fisiología , Proteína P0 de la Mielina/genética , Fibras Nerviosas Mielínicas/fisiología , Transfección/métodos
2.
J Neurosci ; 28(11): 2827-36, 2008 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-18337413

RESUMEN

The mitochondrial metalloprotease AFG3L2 assembles with the homologous protein paraplegin to form a supracomplex in charge of the essential protein quality control within mitochondria. Mutations of paraplegin cause a specific axonal degeneration of the upper motoneuron and, therefore, hereditary spastic paraplegia. Here we present two Afg3l2 murine models: a newly developed null and a spontaneous mutant that we found carrier of a missense mutation. Contrasting with the mild and late onset axonal degeneration of paraplegin-deficient mouse, Afg3l2 models display a marked impairment of axonal development with delayed myelination and poor axonal radial growth leading to lethality at P16. The increased severity of the Afg3l2 mutants is explained by two main molecular features that differentiate AFG3L2 from paraplegin: its higher neuronal expression and its versatile ability to support both hetero-oligomerization and homo-oligomerization. Our data assign to AFG3L2 a crucial role by linking mitochondrial metabolism and axonal development. Moreover, we propose AFG3L2 as an excellent candidate for motoneuron and cerebellar diseases with early onset unknown etiology.


Asunto(s)
Adenosina Trifosfatasas/biosíntesis , Axones/enzimología , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Proteasas ATP-Dependientes , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Axones/patología , Axones/fisiología , Ratones , Ratones Mutantes , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular
3.
J Neurosci ; 25(37): 8567-77, 2005 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-16162938

RESUMEN

Mutations in MTMR2, the myotubularin-related 2 gene, cause autosomal recessive Charcot-Marie-Tooth type 4B1 (CMT4B1). This disorder is characterized by childhood onset of weakness and sensory loss, severely decreased nerve conduction velocity, demyelination in the nerve with myelin outfoldings, and severe functional impairment of affected patients, mainly resulting from loss of myelinated fibers in the nerve. We recently generated Mtmr2-null(neo) mice, which show a dysmyelinating neuropathy with myelin outfoldings, thus reproducing human CMT4B1. Mtmr2 is detected in both Schwann cells and neurons, in which it interacts with discs large 1/synapse-associated protein 97 and neurofilament light chain, respectively. Here, we specifically ablated Mtmr2 in either Schwann cells or motor neurons. Disruption of Mtmr2 in Schwann cells produced a dysmyelinating phenotype very similar to that of the Mtmr2-null(neo) mouse. Disruption of Mtmr2 in motor neurons does not provoke myelin outfoldings nor axonal defects. We propose that loss of Mtmr2 in Schwann cells, but not in motor neurons, is both sufficient and necessary to cause CMT4B1 neuropathy. Thus, therapeutical approaches might be designed in the future to specifically deliver the Mtmr2 phospholipid phosphatase to Schwann cells in affected nerves.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Neuronas Motoras/enzimología , Vaina de Mielina/patología , Proteínas Tirosina Fosfatasas/deficiencia , Proteínas Tirosina Fosfatasas/metabolismo , Células de Schwann/enzimología , Animales , Ratones , Ratones Noqueados , Neuronas Motoras/fisiología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas no Receptoras
4.
J Cell Sci ; 119(Pt 19): 3981-93, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16988027

RESUMEN

Axonal loss causes disabling and permanent deficits in many peripheral neuropathies, and may result from inefficient nerve regeneration due to a defective relationship between Schwann cells, axons and the extracellular matrix. These interactions are mediated by surface receptors and transduced by cytoskeletal molecules. We investigated whether peripheral nerve regeneration is perturbed in mice that lack glial fibrillary acidic protein (GFAP), a Schwann-cell-specific cytoskeleton constituent upregulated after damage. Peripheral nerves develop and function normally in GFAP-null mice. However, axonal regeneration after damage was delayed. Mutant Schwann cells maintained the ability to dedifferentiate but showed defective proliferation, a key event for successful nerve regeneration. We also showed that GFAP and the other Schwann-cell-intermediate filament vimentin physically interact in two distinct signaling pathways involved in proliferation and nerve regeneration. GFAP binds integrin alphavbeta8, which initiates mitotic signals soon after damage by interacting with fibrin. Consistently, ERK phosphorylation was reduced in crushed GFAP-null nerves. Vimentin instead binds integrin alpha5beta1, which regulates proliferation and differentiation later in regeneration, and may compensate for the absence of GFAP in mutant mice. GFAP might contribute to form macro-complexes to initiate mitogenic and differentiating signaling for efficient nerve regeneration.


Asunto(s)
Proliferación Celular , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/fisiología , Regeneración Nerviosa/genética , Células de Schwann/fisiología , Animales , Diferenciación Celular/genética , Citoesqueleto/metabolismo , Matriz Extracelular/química , Integrinas/metabolismo , Filamentos Intermedios/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Compresión Nerviosa/rehabilitación , Neuronas/citología , Neuronas/fisiología , Sistema Nervioso Periférico/crecimiento & desarrollo , Nervio Ciático/lesiones , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA