Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(14): 2462-2470, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35043938

RESUMEN

Transcriptome-wide association studies (TWAS) integrate genome-wide association study (GWAS) data with gene expression (GE) data to identify (putative) causal genes for complex traits. There are two stages in TWAS: in Stage 1, a model is built to impute gene expression from genotypes, and in Stage 2, gene-trait association is tested using imputed gene expression. Despite many successes with TWAS, in the current practice, one only assumes a linear relationship between GE and the trait, which however may not hold, leading to loss of power. In this study, we extend the standard TWAS by considering a quadratic effect of GE, in addition to the usual linear effect. We train imputation models for both linear and quadratic gene expression levels in Stage 1, then include both the imputed linear and quadratic expression levels in Stage 2. We applied both the standard TWAS and our approach first to the ADNI gene expression data and the IGAP Alzheimer's disease GWAS summary data, then to the GTEx (V8) gene expression data and the UK Biobank individual-level GWAS data for lipids, followed by validation with different GWAS data, suitable model checking and more robust TWAS methods. In all these applications, the new TWAS approach was able to identify additional genes associated with Alzheimer's disease, LDL and HDL cholesterol levels, suggesting its likely power gains and thus the need to account for potentially nonlinear effects of gene expression on complex traits.


Asunto(s)
Enfermedad de Alzheimer , Transcriptoma , Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcriptoma/genética
2.
BMC Public Health ; 21(1): 1782, 2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34600500

RESUMEN

BACKGROUND: The development of public health policy is inextricably linked with governance structure. In our increasingly globalized world, human migration and infectious diseases often span multiple administrative jurisdictions that might have different systems of government and divergent management objectives. However, few studies have considered how the allocation of regulatory authority among jurisdictions can affect disease management outcomes. METHODS: Here we evaluate the relative merits of decentralized and centralized management by developing and numerically analyzing a two-jurisdiction SIRS model that explicitly incorporates migration. In our model, managers choose between vaccination, isolation, medication, border closure, and a travel ban on infected individuals while aiming to minimize either the number of cases or the number of deaths. RESULTS: We consider a variety of scenarios and show how optimal strategies differ for decentralized and centralized management levels. We demonstrate that policies formed in the best interest of individual jurisdictions may not achieve global objectives, and identify situations where locally applied interventions can lead to an overall increase in the numbers of cases and deaths. CONCLUSIONS: Our approach underscores the importance of tailoring disease management plans to existing regulatory structures as part of an evidence-based decision framework. Most importantly, we demonstrate that there needs to be a greater consideration of the degree to which governance structure impacts disease outcomes.


Asunto(s)
Enfermedades Transmisibles , Política Pública , Enfermedades Transmisibles/epidemiología , Enfermedades Transmisibles/terapia , Manejo de la Enfermedad , Gobierno , Humanos , Viaje
3.
bioRxiv ; 2023 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36945657

RESUMEN

Understanding how genetic variation affects gene expression is essential for a complete picture of the functional pathways that give rise to complex traits. Although numerous studies have established that many genes are differentially expressed in distinct human tissues and cell types, no tools exist for identifying the genes whose expression is differentially regulated. Here we introduce DRAB (Differential Regulation Analysis by Bootstrapping), a gene-based method for testing whether patterns of genetic regulation are significantly different between tissues or other biological contexts. DRAB first leverages the elastic net to learn context-specific models of local genetic regulation and then applies a novel bootstrap-based model comparison test to check their equivalency. Unlike previous model comparison tests, our proposed approach can determine whether population-level models have equal predictive performance by accounting for the variability of feature selection and model training. We validated DRAB on mRNA expression data from a variety of human tissues in the Genotype-Tissue Expression (GTEx) Project. DRAB yielded biologically reasonable results and had sufficient power to detect genes with tissue-specific regulatory profiles while effectively controlling false positives. By providing a framework that facilitates the prioritization of differentially regulated genes, our study enables future discoveries on the genetic architecture of molecular phenotypes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA