Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Immunol ; 21(10): 1139-1140, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32839609
2.
Gastroenterology ; 166(5): 859-871.e3, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38280684

RESUMEN

BACKGROUND & AIMS: The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS: A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS: TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS: This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Perfilación de la Expresión Génica , Neoplasias Pancreáticas , Medicina de Precisión , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Biomarcadores de Tumor/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Pronóstico , Terapia Neoadyuvante , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Valor Predictivo de las Pruebas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Bases de Datos Genéticas
3.
Nat Immunol ; 14(11): 1127-36, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24036998

RESUMEN

Inflammation is a critical component of the immune response. However, acute or chronic inflammation can be highly destructive. Uncontrolled inflammation forms the basis for allergy, asthma and various autoimmune disorders. Here we identified a signaling pathway that was exclusively responsible for the production of inflammatory cytokines but not for cytotoxicity. Recognition of tumor cells expressing the NK cell-activatory ligands H60 or CD137L by mouse natural killer (NK) cells led to efficient cytotoxicity and the production of inflammatory cytokines. Both of those effector functions required the kinases Lck, Fyn and PI(3)K (subunits p85α and p110δ) and the signaling protein PLC-γ2. However, a complex of Fyn and the adaptor ADAP exclusively regulated the production of inflammatory cytokines but not cytotoxicity in NK cells. That unique function of ADAP required a Carma1-Bcl-10-MAP3K7 signaling axis. Our results have identified molecules that can be targeted to regulate inflammation without compromising NK cell cytotoxicity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras de Señalización CARD/inmunología , Citocinas/biosíntesis , Células Asesinas Naturales/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Proteínas Proto-Oncogénicas c-fyn/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Citocinas/inmunología , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Inflamación , Células Asesinas Naturales/patología , Linfoma/genética , Linfoma/inmunología , Linfoma/patología , Quinasas Quinasa Quinasa PAM/genética , Ratones , Proteínas Proto-Oncogénicas c-fyn/genética
4.
Crit Rev Immunol ; 43(1): 1-11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522557

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurological disease characterized by the progressive loss of motor neurons in the brain and spinal cord. No effective therapeutic strategies have been established thus far, and therefore there is a significant unmet need for effective therapeutics to arrest the disease and reverse the pathologies induced by it. Although the cause of ALS is not well-defined, it appears to be heterogenous. Currently over 20 genes have been found to be associated with ALS. Family history can only be found in 10% of ALS patients, but in the remaining 90% no association with family history is found. The most common genetic causes are expansion in the C9orf72 gene and mutations in superoxide dismutase 1, TDP-43, and FUS. In our recent study, we also found mutations in TDP43 and FUS in ALS patients. To understand the pathogenesis of the disease, we set ourselves the task of analyzing the phenotype and function of all key immune effectors in ALS patients, comparing them with either a genetically healthy twin or healthy individuals. Our study demonstrated a significant increase in functional activation of NK and CD8+ T cytotoxic immune effectors and release of significant IFN-γ not only by the effector cells but also in the serum of ALS patients. Longitudinal analysis of CD8+ T cell-mediated IFN-γ secretion from ALS patients demonstrated continued and sustained increase in IFN-γ secretion with periods of decrease which coincided with certain treatments; however, the effects were largely short-lived. N-acetyl cysteine (NAC), one of the treatments used, is known to block cell death; however, even though such treatment was able to block most of the proinflammatory cytokines, chemokines, and growth factor release, it was not able to block IFN-γ and TNF-α, the two cytokines we had demonstrated previously to induce differentiation of the cells. In this review, we discuss the contribution of cytotoxic effector cells, especially primary NK cells, supercharged NK cells (sNK), and the contribution of sNK cells in expansion and functional activation of CD8+ T cells to memory/effector T cells in the pathogenesis of ALS. Potential new targeted therapeutic strategies are also discussed.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Superóxido Dismutasa-1/farmacología , Citocinas/metabolismo
5.
Crit Rev Immunol ; 41(2): 21-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34348000

RESUMEN

Natural killer (NK) cells are major innate lymphocytes. NK cells do not require prior antigen exposure to mediate antitumor cytotoxicity or proinflammatory cytokine production. Since they use only nonclonotypic receptors, they possess high clinical value in treatment against a broad spectrum of malignancies. Irrespective of this potential, however, the transcriptional regulation that governs human NK cell development remains far from fully defined. Various environmental cues initiate a complex network of transcription factors (TFs) during their early development, one of which is GATA2, a master regulator that drives the commitment of common lymphoid progenitors (CLPs) into immature NK progenitors (NKPs). GATA2 forms a core heptad complex with six other TFs (TAL1, FLI1, RUNX1, LYL1, LMO2, and ERG) to mediate its transcriptional regulation in various cell types. Patients with GATA2 haploinsufficiency specifically lose CD56bright NK cells, with or without a reduced number of CD56dlm NK cells. Here, we review the recent progress in understanding GATA2 and its role in human NK cell development and functions.


Asunto(s)
Factor de Transcripción GATA2 , Regulación de la Expresión Génica , Células Asesinas Naturales , Factor de Transcripción GATA2/genética , Humanos
6.
Crit Rev Immunol ; 41(2): 35-44, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34348001

RESUMEN

Fanconi anemia (FA) is an inherited disorder characterized by diverse congenital malformations, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. The role of the Fanconi anemia pathway in DNA repair mechanisms and genome instability is well studied. However, the consequences of inherited mutations in genes encoding the FA proteins and the acquired mutations due to impaired DNA repair complex in immune cells are far from understood. Patients with FA show bone marrow failure (BMF) and have a higher risk of developing myelodysplasia (MDS) or acute myeloid leukemia (AML) which are directly related to having chromosomal instability in hematopoietic stem cells and their subsequent progeny. However, immune dysregulation can also be seen in FA. As mature descendants of the common lymphoid progenitor line, NK cells taken from FA patients are dysfunctional in both NK cell-mediated cytotoxicity and cytokine production. The molecular bases for these defects are yet to be determined. However, recent studies have provided directions to define the cause and effect of inherited and acquired mutations in FA patients. Here, we summarize the recent studies in the hematopoietic dysfunction, focusing on the impairment in the development and functions of NK cells in FA patients, and discuss the possible mechanisms and future directions.


Asunto(s)
Anemia de Fanconi , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Anemia de Fanconi/genética , Humanos , Células Asesinas Naturales , Mutación
7.
Circ Res ; 125(12): 1087-1102, 2019 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-31625810

RESUMEN

RATIONALE: A hallmark of chronic inflammatory disorders is persistence of proinflammatory macrophages in diseased tissues. In atherosclerosis, this is associated with dyslipidemia and oxidative stress, but mechanisms linking these phenomena to macrophage activation remain incompletely understood. OBJECTIVE: To investigate mechanisms linking dyslipidemia, oxidative stress, and macrophage activation through modulation of immunometabolism and to explore therapeutic potential targeting specific metabolic pathways. METHODS AND RESULTS: Using a combination of biochemical, immunologic, and ex vivo cell metabolic studies, we report that CD36 mediates a mitochondrial metabolic switch from oxidative phosphorylation to superoxide production in response to its ligand, oxidized LDL (low-density lipoprotein). Mitochondrial-specific inhibition of superoxide inhibited oxidized LDL-induced NF-κB (nuclear factor-κB) activation and inflammatory cytokine generation. RNA sequencing, flow cytometry, 3H-labeled palmitic acid uptake, lipidomic analysis, confocal and electron microscopy imaging, and functional energetics revealed that oxidized LDL upregulated effectors of long-chain fatty acid uptake and mitochondrial import, while downregulating fatty acid oxidation and inhibiting ATP5A (ATP synthase F1 subunit alpha)-an electron transport chain component. The combined effect is long-chain fatty acid accumulation, alteration of mitochondrial structure and function, repurposing of the electron transport chain to superoxide production, and NF-κB activation. Apoe null mice challenged with high-fat diet showed similar metabolic changes in circulating Ly6C+ monocytes and peritoneal macrophages, along with increased CD36 expression. Moreover, mitochondrial reactive oxygen species were positively correlated with CD36 expression in aortic lesional macrophages. CONCLUSIONS: These findings reveal that oxidized LDL/CD36 signaling in macrophages links dysregulated fatty acid metabolism to oxidative stress from the mitochondria, which drives chronic inflammation. Thus, targeting to CD36 and its downstream effectors may serve as potential new strategies against chronic inflammatory diseases such as atherosclerosis.


Asunto(s)
Antígenos CD36/deficiencia , Reprogramación Celular/fisiología , Macrófagos/metabolismo , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Animales , Antígenos CD36/genética , Células Cultivadas , Femenino , Humanos , Inflamación/genética , Inflamación/metabolismo , Masculino , Metabolismo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/genética
8.
J Immunol ; 200(6): 1982-1987, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29440507

RESUMEN

B6.SJL-Ptprca Pepcb /Boy (CD45.1) mice have been used in hundreds of congenic competitive transplants, with the presumption that they differ from C57BL/6 mice only at the CD45 locus. In this study, we describe a point mutation in the natural cytotoxicity receptor 1 (Ncr1) locus fortuitously identified in the CD45.1 strain. This point mutation was mapped at the 40th nucleotide of the Ncr1 locus causing a single amino acid mutation from cysteine to arginine at position 14 from the start codon, resulting in loss of NCR1 expression. We found that these mice were more resistant to CMV due to a hyper innate IFN-γ response in the absence of NCR1. In contrast, loss of NCR1 increased susceptibility to influenza virus, a result that is consistent with the role of NCR1 in the recognition of influenza Ag, hemagglutinin. This work sheds light on potential confounding experimental interpretation when this congenic strain is used as a tool for tracking lymphocyte development.


Asunto(s)
Antígenos Ly/genética , Antígenos Comunes de Leucocito/genética , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Infecciones por Orthomyxoviridae/inmunología , Orthomyxoviridae/inmunología , Mutación Puntual/genética , Animales , Hemaglutininas/inmunología , Inmunidad Innata , Interferón gamma/inmunología , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/genética
9.
BMC Dev Biol ; 19(1): 16, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286885

RESUMEN

BACKGROUND: The Tet protein family (Tet1, Tet2, and Tet3) regulate DNA methylation through conversion of 5-methylcytosine to 5-hydroxymethylcytosine which can ultimately result in DNA demethylation and play a critical role during early mammalian development and pluripotency. While multiple groups have generated knockouts combining loss of different Tet proteins in murine embryonic stem cells (ESCs), differences in genetic background and approaches has made it difficult to directly compare results and discern the direct mechanism by which Tet proteins regulate the transcriptome. To address this concern, we utilized genomic editing in an isogenic pluripotent background which permitted a quantitative, flow-cytometry based measurement of pluripotency in combination with genome-wide assessment of gene expression and DNA methylation changes. Our ultimate goal was to generate a resource of large-scale datasets to permit hypothesis-generating experiments. RESULTS: We demonstrate a quantitative disparity in the differentiation ability among Tet protein deletions, with Tet2 single knockout exhibiting the most severe defect, while loss of Tet1 alone or combinations of Tet genes showed a quantitatively intermediate phenotype. Using a combination of transcriptomic and epigenomic approaches we demonstrate an increase in DNA hypermethylation and a divergence of transcriptional profiles in pluripotency among Tet deletions, with loss of Tet2 having the most profound effect in undifferentiated ESCs. CONCLUSIONS: We conclude that loss of Tet2 has the most dramatic effect both on the phenotype of ESCs and the transcriptome compared to other genotypes. While loss of Tet proteins increased DNA hypermethylation, especially in gene promoters, these changes in DNA methylation did not correlate with gene expression changes. Thus, while loss of different Tet proteins alters DNA methylation, this change does not appear to be directly responsible for transcriptome changes. Thus, loss of Tet proteins likely regulates the transcriptome epigenetically both through altering 5mC but also through additional mechanisms. Nonetheless, the transcriptome changes in pluripotent Tet2-/- ESCs compared to wild-type implies that the disparities in differentiation can be partially attributed to baseline alterations in gene expression.


Asunto(s)
Metilación de ADN/genética , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Proteínas Proto-Oncogénicas/genética , Animales , Sistemas CRISPR-Cas/genética , Diferenciación Celular/genética , Dioxigenasas , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Noqueados
10.
Pediatr Blood Cancer ; 66(11): e27950, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31368194

RESUMEN

BACKGROUND: Donor lymphocyte infusion (DLI) is often used to treat leukemic relapse after hematopoietic cell transplantation (HCT). However, the relationship between outcomes and distinct DLI cellular composition has not been previously reported. Additionally, there are limited published data on efficacy in pediatrics. We evaluated whether DLI cellular content and development of graft-versus-host disease (GVHD) impacted disease and influenced overall survival (OS) in children receiving DLI for recurrent leukemia. METHODS: We performed an Institutional Review Board-approved, retrospective study investigating all consecutive DLIs given to patients at the Children's Hospital of Wisconsin between 1980 and 2018. Analyses were conducted using Mann-Whitney, Fisher exact, and chi-square tests. RESULTS: Thirty patients ≤20 years old with hematologic malignancies (myeloid [AML/MDS/CML/JMML], n = 23; lymphoid [ALL], n = 7) received DLI to treat post-transplant relapse. We found no significant difference in OS or development of GVHD based on CD3, CD4, CD8, CD56, or CD19 DLI cellular composition. With a median follow-up of 0.69 (range, 0.04-16.61) years, OS at five years was 32% ± 9%.  The lymphoid group had a five-year survival rate at 71% ± 17% compared with the myeloid group at 22% ± 9%, although not statistically significant (P = 0.11).  The development of GVHD did not affect OS (P = 0.62). CONCLUSION: Here, we report a single-center, long-term experience of pediatric DLIs. Surprisingly, many children with ALL were able to achieve durable remissions. Although cellular composition did not have a significant effect on GVHD or OS in our small study, engineering DLI products to maximize specific effector cell populations could be one strategy to improve efficacy.


Asunto(s)
Transfusión de Linfocitos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Terapia Recuperativa , Adolescente , Niño , Femenino , Estudios de Seguimiento , Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/terapia , Masculino , Síndromes Mielodisplásicos/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Recurrencia , Estudios Retrospectivos , Riesgo , Tasa de Supervivencia , Adulto Joven
11.
Int J Mol Sci ; 20(23)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31756921

RESUMEN

It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Inmunoterapia Adoptiva/métodos , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Humanos
12.
J Immunol ; 188(5): 2057-63, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22345702

RESUMEN

Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated ß-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.


Asunto(s)
Comunicación Celular/inmunología , Espacio Intracelular/inmunología , Espacio Intracelular/metabolismo , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Multimerización de Proteína/inmunología , Proteínas Activadoras de ras GTPasa/fisiología , Animales , Células Cultivadas , Espacio Intracelular/química , Subgrupos Linfocitarios/química , Ratones , Ratones Noqueados , Mapeo de Interacción de Proteínas/métodos , Transducción de Señal/inmunología , Proteínas Activadoras de ras GTPasa/química , Proteínas Activadoras de ras GTPasa/deficiencia
13.
Commun Biol ; 7(1): 769, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918571

RESUMEN

Innate lymphoid cells (ILCs) are largely tissue-resident, mostly described within the mucosal tissues. However, their presence and functions in the human draining lymph nodes (LNs) are unknown. Our study unravels the tissue-specific transcriptional profiles of 47,287 CD127+ ILCs within the human abdominal and thoracic LNs. LNs contain a higher frequency of CD127+ ILCs than in BM or spleen. We define independent stages of ILC development, including EILP and pILC in the BM. These progenitors exist in LNs in addition to naïve ILCs (nILCs) that can differentiate into mature ILCs. We define three ILC1 and four ILC3 sub-clusters in the LNs. ILC1 and ILC3 subsets have clusters with high heat shock protein-encoding genes. We identify previously unrecognized regulons, including the BACH2 family for ILC1 and the ATF family for ILC3. Our study is the comprehensive characterization of ILCs in LNs, providing an in-depth understanding of ILC-mediated immunity in humans.


Asunto(s)
Inmunidad Innata , Ganglios Linfáticos , Linfocitos , Bazo , Transcriptoma , Humanos , Inmunidad Innata/genética , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Bazo/inmunología , Bazo/citología , Médula Ósea/inmunología , Perfilación de la Expresión Génica , Masculino
14.
J Immunol ; 187(8): 3997-4006, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21900176

RESUMEN

Grafts can be rejected even when matched for MHC because of differences in the minor histocompatibility Ags (mH-Ags). H4- and H60-derived epitopes are known as immunodominant mH-Ags in H2(b)-compatible BALB.B to C57BL/6 transplantation settings. Although multiple explanations have been provided to explain immunodominance of Ags, the role of vascularization of the graft is yet to be determined. In this study, we used heart (vascularized) and skin (nonvascularized) transplantations to determine the role of primary vascularization of the graft. A higher IFN-γ response toward H60 peptide occurs in heart recipients. In contrast, a higher IFN-γ response was generated against H4 peptide in skin transplant recipients. Peptide-loaded tetramer staining revealed a distinct antigenic hierarchy between heart and skin transplantation: H60-specific CD8(+) T cells were the most abundant after heart transplantation, whereas H4-specific CD8(+) T cells were more abundant after skin graft. Neither the tissue-specific distribution of mH-Ags nor the draining lymph node-derived dendritic cells correlated with the observed immunodominance. Interestingly, non-primarily vascularized cardiac allografts mimicked skin grafts in the observed immunodominance, and H60 immunodominance was observed in primarily vascularized skin grafts. However, T cell depletion from the BALB.B donor prior to cardiac allograft induces H4 immunodominance in vascularized cardiac allograft. Collectively, our data suggest that immediate transmigration of donor T cells via primary vascularization is responsible for the immunodominance of H60 mH-Ag in organ and tissue transplantation.


Asunto(s)
Rechazo de Injerto/inmunología , Trasplante de Corazón/inmunología , Epítopos Inmunodominantes/inmunología , Antígenos de Histocompatibilidad Menor/inmunología , Neovascularización Fisiológica/inmunología , Trasplante de Piel/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Quimiotaxis de Leucocito/inmunología , Cromatografía Líquida de Alta Presión , Activación de Linfocitos/inmunología , Prueba de Cultivo Mixto de Linfocitos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante Homólogo/inmunología
15.
Front Immunol ; 14: 1132807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197660

RESUMEN

Introduction and methods: In this study we report that sequential treatment of supercharged NK (sNK) cells with either chemotherapeutic drugs or check-point inhibitors eliminate both poorly differentiated and well differentiated tumors in-vivo in humanized-BLT mice. Background and results: sNK cells were found to be a unique population of activated NK cells with genetic, proteomic, and functional attributes that are very different from primary untreated or IL-2 treated NK cells. Furthermore, NK-supernatant differentiated or well-differentiated oral or pancreatic tumor cell lines are not susceptible to IL-2 activated primary NK cell-mediated cytotoxicity; however, they are greatly killed by the CDDP and paclitaxel in in-vitro assays. Injection of one dose of sNK cells at 1 million cells per mouse to aggressive CSC-like/poorly differentiated oral tumor bearing mice, followed by an injection of CDDP, inhibited tumor weight and growth, and increased IFN-γ secretion as well as NK cell-mediated cytotoxicity substantially in bone marrow, spleen and peripheral blood derived immune cells. Similarly, the use of check point inhibitor anti-PD-1 antibody increased IFN-γ secretion and NK cell-mediated cytotoxicity, and decreased the tumor burden in-vivo, and tumor growth of resected minimal residual tumors from hu-BLT mice when used sequentially with sNK cells. The addition of anti-PDL1 antibody to poorly differentiated MP2, NK-differentiated MP2 or well-differentiated PL-12 pancreatic tumors had different effects on tumor cells depending on the differentiation status of the tumor cells, since differentiated tumors expressed PD-L1 and were susceptible to NK cell mediated ADCC, whereas poorly differentiated OSCSCs or MP2 did not express PD-L1 and were killed directly by the NK cells. Conclusions: Therefore, the ability to target combinatorially clones of tumors with NK cells and chemotherapeutic drugs or NK cells with checkpoint inhibitors at different stages of tumor differentiation may be crucial for successful eradication and cure of cancer. Furthermore, the success of check point inhibitor PD-L1 may relate to the levels of expression on tumor cells.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Boca , Animales , Ratones , Antígeno B7-H1/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Interleucina-2/metabolismo , Proteómica , Células Asesinas Naturales , Neoplasias de la Boca/patología
16.
J Biol Chem ; 286(36): 31213-24, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21771792

RESUMEN

Carma1, a caspase recruitment domain-containing membrane-associated guanylate kinase, initiates a unique signaling cascade via Bcl10 and Malt1 in NK cells. Carma1 deficiency results in reduced phosphorylation of JNK1/2 and activation of NF-κB that lead to impaired NK cell-mediated cytotoxicity and cytokine production. However, the precise identities of the downstream signaling molecules that link Carma1 to these effector functions were not defined. Here we show that transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) is abundantly present in NK cells, and activation via NKG2D results in its phosphorylation. Lack of Carma1 considerably reduced TAK1 phosphorylation, demonstrating the dependence of TAK1 on Carma1 in NKG2D-mediated NK cell activations. Pharmacological inhibitor to TAK1 significantly reduced NK-mediated cytotoxicity and its potential to generate IFN-γ, GM-CSF, MIP-1α, MIP-1ß, and RANTES. Conditional in vivo knockdown of TAK1 in NK cells from Mx1Cre(+)TAK1(fx/fx) mice resulted in impaired NKG2D-mediated cytotoxicity and cytokine/chemokine production. Inhibition or conditional knockdown of TAK1 severely impaired the NKG2D-mediated phosphorylation of ERK1/2 and JNK1/2 and activation of NF-κB and AP1. Our results show that TAK1 links Carma1 to NK cell-mediated effector functions.


Asunto(s)
Citocinas/inmunología , Citotoxicidad Inmunológica , Células Asesinas Naturales/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Animales , Proteínas Adaptadoras de Señalización CARD , Citocinas/biosíntesis , Ratones , Fosforilación , Transducción de Señal
17.
Genome Med ; 14(1): 57, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610660

RESUMEN

A recent study highlights the presence of a unique memory-like natural killer (NK) cell subset, which accumulates with aging and appears to associate withdisease severity in COVID-19 patients. While the clinical relevance of memory in NK cells is being debated, the molecular identity of this subset in the form of a single-cell transcriptome is essential to define their origin, longevity, functions, and disease relevance.


Asunto(s)
Envejecimiento , COVID-19 , Células Asesinas Naturales , Transcriptoma , Envejecimiento/genética , COVID-19/inmunología , Humanos , Células Asesinas Naturales/inmunología
18.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36066493

RESUMEN

The mechanisms that govern the development of adaptive-like NK cells are elusive. Shemesh et al. (2022. J. Exp. Med.https://doi.org/10.1084/jem.20220551) report that the development of FcRγ-/low adaptive-like NK cells requires reduced mTOR activity and depends on TGF-ß or IFN-α. These findings provide exciting new molecular blueprints explaining the development and functions of adaptive-like NK cells.


Asunto(s)
Células Asesinas Naturales , Factor de Crecimiento Transformador beta
19.
Methods Mol Biol ; 2463: 3-9, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35344163

RESUMEN

Natural killer (NK) cells are innate cytotoxic immune cells essential for mediating first-line defense against various environmental antigens. With the discoveries of other subsets of innate lymphocytes over the last decade, NK cells are categorized as innate lymphoid cells (ILC) and as the innate counterparts of cytotoxic T cells. Besides NK cells, ILCs are classified into three groups distinguished by their dependence on distinct transcription factors for development and unique effector functions. Subsets of ILCs share many surface proteins that, however, have initially been identified as NK cell markers, making them hard to be distinguished for detailed investigations. Here, we describe a method to identify and individually isolate subsets of innate lymphoid cells from gut lamina propria using cell surface markers.


Asunto(s)
Inmunidad Innata , Células Asesinas Naturales , Animales , Mucosa Intestinal , Ratones , Linfocitos T Citotóxicos
20.
Methods Mol Biol ; 2463: 103-116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35344170

RESUMEN

Natural killer (NK) cells are innate lymphocytes that control tumors and microbial infections. Human NK cells are transcriptomically and phenotypically heterogeneous. The site where NK cells develop and reside determines their phenotype and effector functions. Our current knowledge about human NK cells is primarily from blood- and bone marrow-derived NK cells. The major limitation in formulating organ-specific clinical therapy is the knowledge gap on how tissue-resident NK cells develop, home, and function. Thus, it is crucial to define the transcriptomic profiles and the transcriptional regulation of tissue-resident NK cells. The major challenges in studying tissue-resident NK cells include their total number and the complexity of the tissue. Additionally, during isolation, keeping them viable and naïve without activation are challenging tasks. Here, we provide methods for isolating and performing transcriptomic analyses of NK cells at the individual cell level. Single-cell RNA sequencing provides a higher resolution of cellular heterogeneity and a better understanding of cell-cell interactions within the microenvironment. Using these methods, we can efficiently identify distinct populations of NK cells in tissues and define their unique transcriptomic profiles.


Asunto(s)
Células Asesinas Naturales , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA