Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(3): e2300604, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148299

RESUMEN

In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.


Asunto(s)
Acarbosa , Inhibidores de Glicósido Hidrolasas , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad
2.
Arch Pharm (Weinheim) ; 357(8): e2400140, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38687119

RESUMEN

Diabetes is a serious metabolic disorder affecting individuals of all age groups and prevails globally due to the failure of previous treatments. This study aims to address the most prevalent form of type 2 diabetes mellitus (T2DM) by reporting on the design, synthesis, and in vitro as well as in silico evaluation of chromone-based thiosemicarbazones as potential α-glucosidase inhibitors. In vitro experiments showed that the tested compounds were significantly more potent than the standard acarbose, with the lead compound 3n exhibiting an IC50 value of 0.40 ± 0.02 µM, ~2183-fold higher than acarbose having an IC50 of 873.34 ± 1.67 µM. A kinetic mechanism analysis demonstrated that compound 3n exhibited reversible inhibition of α-glucosidase. To gain deeper insights, in silico molecular docking, pharmacokinetics, and molecular dynamics simulations were conducted for the investigation of the interactions, orientation, stability, and conformation of the synthesized compounds within the active pocket of α-glucosidase.


Asunto(s)
Cromonas , Diabetes Mellitus Tipo 2 , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Tiosemicarbazonas , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Cromonas/farmacología , Cromonas/síntesis química , Cromonas/química , Relación Estructura-Actividad , alfa-Glucosidasas/metabolismo , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Tiosemicarbazonas/síntesis química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estructura Molecular , Humanos , Simulación de Dinámica Molecular , Simulación por Computador , Relación Dosis-Respuesta a Droga
3.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124882

RESUMEN

In this paper, we present the synthesis and characterization of two known sulfonyl hydrazides (1 and 2) and their new sulfonyl hydrazone derivatives (9-20), as well as in vitro and in silico investigations of their cytotoxic properties against human lung (A549) and human breast (MCF-7) cancer cell lines. The target compounds (9-20) obtained in high yields were synthesized for the first time by a multi-step reaction, and their structures were confirmed by elemental analysis and various spectral techniques, including FT-IR, 1H-, and 13C-NMR. The antiproliferative profiles of these compounds (1, 2, and 9-20) in this study were determined at concentrations of 200, 100, 50, and 25 µM against selected cancer cell lines for 72 h using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method. Except for compounds 1 and 2, other compounds (9-20) demonstrated cytotoxic activity at concentrations lower than 200 µM. The newly synthesized compounds (9-20) demonstrated antiproliferative activities at a micromolar level, with IC50 values in the range of 29.59-176.70 µM for the A549 cell line and 27.70-170.30 µM for the MCF-7 cell line. Among these compounds, compound 15 (IC50 = 29.59 µM against A549 cell line and IC50 = 27.70 µM against MCF-7 cell line) showed the highest cytotoxic activity against these two cancer cell lines compared to the reference drug cisplatin (IC50 = 22.42 µM against A549 cell line and IC50 = 18.01 µM against MCF-7 cell line). From docking simulations, to establish a plausible binding mode of compounds, we noticed that compound 15 demonstrated the highest affinity (-6.8508 kcal/mol) for estrogen receptor-beta (ERbeta) compared to others, suggesting promising ERbeta binding potential. Most compounds followed Lipinski's rule of five, with acceptable logP values. Additionally, all had mixed gastrointestinal absorption and limited blood-brain barrier permeability. Overall, our study proposed new sulfonyl hydrazones as a potential class of anticancer agents.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Hidrazonas , Simulación del Acoplamiento Molecular , Humanos , Hidrazonas/química , Hidrazonas/farmacología , Hidrazonas/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Células MCF-7 , Células A549 , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Línea Celular Tumoral , Ésteres/química , Ésteres/farmacología
4.
Molecules ; 29(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065009

RESUMEN

Volatile oils or essential oils (EOs) were extracted from three V. sebifera samples (labeled as A, B, and C) in September 2018 and February 2019; the extraction process involved hydrodistillation of the leaves. The chemical compositions of the EOs were analyzed using gas chromatography-mass spectrometry (GC/MS). The volatile components were identified by comparing their retention indices and mass spectra with standard substances documented in the literature (ADAMS). The antioxidant activity of the EOs was evaluated using 2, 2-diphenyl-1-picrylhydrazyl (DPPH), while their toxicity was assessed using Artemia salina Leach. Molecular docking was utilized to examine the interaction between the major constituents of V. sebifera EO and acetylcholinesterase (AChE), a molecular target linked to toxicity in A. salina models. The EO obtained from specimen A, collected in September 2018, was characterized by being primarily composed of (E,E)-α-farnesene (47.57%), (E)-caryophyllene (12.26%), and α-pinene (6.93%). Conversely, the EO from specimen A, collected in February 2019, was predominantly composed of (E,E)-α-farnesene (42.82%), (E)-caryophyllene (16.02%), and bicyclogermacrene (8.85%), the EO from specimen B, collected in September 2018, primarily contained (E,E)-α-farnesene (47.65%), (E)-caryophyllene (19.67%), and α-pinene (11.95%), and the EO from the leaves collected in February 2019 was characterized by (E,E)-α-farnesene (23.57%), (E)-caryophyllene (19.34%), and germacrene D (7.33%). The EO from the leaves collected in September 2018 contained (E,E)-α-farnesene (26.65%), (E)-caryophyllene (15.7%), and germacrene D (7.72%), while the EO from the leaves collected in February 2019 was primarily characterized by (E,E)-α-farnesene (37.43%), (E)-caryophyllene (21.4%), and α-pinene (16.91%). Among these EOs, sample B collected in February 2019 demonstrated the highest potential for inhibiting free radicals, with an inhibition rate of 34.74%. Conversely, the EOs from specimen A exhibited the highest toxic potentials, with an lethal concentration 50 (LC50) value of 57.62 ± 1.53 µg/mL, while specimen B had an LC50 value of 74.72 ± 2.86 µg/mL. Molecular docking results suggested that hydrophobic interactions significantly contributed to the binding of the major compounds in the EO from sample B to the binding pocket of AChE.


Asunto(s)
Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Aceites Volátiles , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Animales , Artemia/efectos de los fármacos , Simulación del Acoplamiento Molecular , Hojas de la Planta/química , Acetilcolinesterasa/metabolismo
5.
Molecules ; 29(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38474459

RESUMEN

The essential oils and aroma derived from the leaves (L), stems (St), and spikes (s) of Piper nigrum L. cv. Guajarina were extracted; the essential oils were extracted using hydrodistillation (HD), and steam distillation (SD), and the aroma was obtained by simultaneous distillation and extraction (SDE). Chemical constituents were identified and quantified using GC/MS and GC-FID. Preliminary biological activity was assessed by determining the toxicity against Artemia salina Leach larvae, calculating mortality rates, and determining lethal concentration values (LC50). The predominant compounds in essential oil samples included α-pinene (0-5.6%), ß-pinene (0-22.7%), limonene (0-19.3%), 35 linalool (0-5.3%), δ-elemene (0-10.1%), ß-caryophyllene (0.5-21.9%), γ-elemene (7.5-33.9%), and curzerene (6.9-31.7%). Multivariate analysis, employing principal component analysis (PCA) and hierarchical cluster analysis (HCA), revealed three groups among the identified classes and two groups among individual compounds. The highest antioxidant activity was found for essential oils derived from the leaves (167.9 41 mg TE mL-1). Larvicidal potential against A. salina was observed in essential oils obtained from the leaves (LC50 6.40 µg mL-1) and spikes (LC50 6.44 µg mL-1). The in silico studies demonstrated that the main compounds can interact with acetylcholinesterase, thus showing the potential molecular interaction responsible for the toxicity of the essential oil in A. salina.


Asunto(s)
Artrópodos , Aceites Volátiles , Piper nigrum , Piper , Sesquiterpenos , Animales , Aceites Volátiles/química , Acetilcolinesterasa , Cromatografía de Gases y Espectrometría de Masas , Piper/química , Aceites de Plantas/química
6.
Bioorg Chem ; 139: 106739, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478545

RESUMEN

Type-2 Diabetes Mellitus (T2DM) is one of the most common metabolic disorders in the world and over the past three decades its incidence has increased drastically. α-Glucosidase inhibitors are used to control the hyperglycemic affect of T2DM. Herein, we report the synthesis, α-glucosidase inhibition, structure activity relationship, pharmacokinetics and docking analysis of various novel chromone based thiosemicarbazones 3(a-r). The derivatives displayed potent activity against α-glucosidase with IC50 in range of 0.11 ± 0.01-79.37 ± 0.71 µM. Among all the synthesized compounds, 3a (IC50 = 0.17 ± 0.026 µM), 3 g (IC50 = 0.11 ± 0.01 µM), 3n (IC50 = 0.55 ± 0.02 µM), and 3p (IC50 = 0.43 ± 0.025 µM) displayed higher inhibitory activity as compared to the standard, acarbose. Moreover, we have developed a statistically significant 2D-QSAR model (R2tr:0.9693; F: 50.4647 and Q2LOO:0.9190), which can be used in future to further design potent thiosemicarbazones as inhibitors of α-glucosidase.


Asunto(s)
Diabetes Mellitus Tipo 2 , Tiosemicarbazonas , Humanos , Inhibidores de Glicósido Hidrolasas/química , Tiosemicarbazonas/farmacología , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estructura Molecular
7.
Molecules ; 28(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36985773

RESUMEN

A series of multistep synthesis protocols was adopted to synthesize substituted imidazopyridines (IMPs) (SM-IMP-01 to SM-IMP-13, and DA-01-05). All substituted IMPs were then characterized using standard spectroscopic techniques such as 1H-NMR, 13C-NMR, elemental analyses, and mass spectrometry. Our both in vitro qualitative and quantitative results for antibacterial analysis, against Klebsiella pneumoniae ATCC 4352 and Bacillus subtilis ATCC 6051 suggested that all compounds essentially exhibited activity against selected strains of bacteria. Our DFT analyses suggested that the compounds of the SM-IMP-01-SM-IMP-13 series have HOMO/LUMO gaps within 4.43-4.69 eV, whereas the compounds of the DA-01-DA-05 series have smaller values of the HOMO/LUMO gaps, 3.24-4.17 eV. The lowest value of the global hardness and the highest value of the global softness, 2.215 and 0.226 eV, respectively, characterize the compound SM-IMP-02; thus, it is the most reactive compound in the imidazopyridine carboxamide series (except hydrazide series). This compound also depicted lesser MIC values against Klebsiella pneumoniae ATCC 4352 and Bacillus subtilis ATCC 6051 as 4.8 µg/mL, each. In terms of another series, hydrazide DA-05 depicted strong antimicrobial actions (MIC: 4.8 µg/mL against both bacterial strains) and also had the lowest energy gap (3.24 eV), higher softness (0.309 eV), and lesser hardness (1.62 eV). Overall, when we compare qualitative and quantitative antimicrobial results, it is been very clear that compounds with dibromo substitutions on imidazopyridine (IMP) rings would act as better antimicrobial agents than those with -H at the eighth position on the IMP ring. Furthermore, substituents of higher electronegativities would tend to enhance the biological activities of dibromo-IMP compounds. DFT properties were also well comparable to this trend and overall, we can say that the electronic behavior of compounds under investigation has key roles in their bioactivities.


Asunto(s)
Antiinfecciosos , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/química , Piridinas/farmacología , Bacterias , Pruebas de Sensibilidad Microbiana
8.
Molecules ; 28(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37570784

RESUMEN

The essential oils (OEs) of the leaves, stems, and spikes of P. marginatum were obtained by hydrodistillation, steam distillation, and simultaneous extraction. The chemical constituents were identified and quantified by GC/MS and GC-FID. The preliminary biological activity was determined by assessing the toxicity of the samples to Artemia salina Leach larvae and calculating the mortality rate and lethal concentration (LC50). The antioxidant activity of the EOs was determined by the DPPH radical scavenging method. Molecular modeling was performed using molecular docking and molecular dynamics, with acetylcholinesterase being the molecular target. The OES yields ranged from 1.49% to 1.83%. The EOs and aromatic constituents of P. marginatum are characterized by the high contents of (E)-isoosmorhizole (19.4-32.9%), 2-methoxy-4,5-methylenedioxypropiophenone (9.0-19.9%), isoosmorhizole (1.6-24.5%), and 2-methoxy-4,5-methylenedioxypropiophenone isomer (1.6-14.3%). The antioxidant potential was significant in the OE of the leaves and stems of P. marginatum extracted by SD in November (84.9 ± 4.0 mg TE·mL-1) and the OEs of the leaves extracted by HD in March (126.8 ± 12.3 mg TE·mL-1). Regarding the preliminary toxicity, the OEs of Pm-SD-L-St-Nov and Pm-HD-L-St-Nov had mortality higher than 80% in concentrations of 25 µg·mL-1. This in silico study on essential oils elucidated the potential mechanism of interaction of the main compounds, which may serve as a basis for advances in this line of research.


Asunto(s)
Aceites Volátiles , Piper , Aceites Volátiles/farmacología , Aceites Volátiles/química , Piper/química , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Acetilcolinesterasa
9.
J Asian Nat Prod Res ; 23(7): 712-716, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32400182

RESUMEN

A green protocol for the synthesis of unsubstituted imidazoles has been demonstrated herein. The reaction is realized using commercially available lipase enzyme, porcine pancreas lipase (PPL) in water. The reaction conditions are selective and mild which helped to tolerate a wide variety of functional groups to give the desired products in good chemical yields.[Formula: see text].


Asunto(s)
Imidazoles , Agua , Animales , Lipasa , Estructura Molecular , Porcinos
10.
Int J Biol Macromol ; 275(Pt 2): 133827, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084983

RESUMEN

Monitoring of food freshness is considered one of the crucial challenges for both customers/consumers and the food industries. In this study, we developed a curcumin-based starch film (F1) for pH-sensitive intelligent food packaging application. The starch was obtained from waste seeds of Artocarpus lakoocha (NS-MJF). The native starch underwent various physical and chemical modifications to yield modified starches (S1 [Autoclave heat treated], S2 [osmotic-pressure treated], S3 [citric acid treated]). The native starch was then used further for the formation of curcumin (2.5 % w/w)-based film (F1). We had analyzed these starches for solubility, colour analysis, biodegradability, oil absorption capacity, and moisture content, etc. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed favourable microstructures. The addition of curcumin to the starch enhanced the contact angle and elongation at the break of the resulting films. Antioxidant and antimicrobial assays, along with real-time freshness monitoring of chicken fillets, were also conducted. Thus, our findings may contribute to the optimization of pH-responsive biopolymer-based films for intelligent poultry packaging, promising advancements in food preservation and safety.


Asunto(s)
Antibacterianos , Antioxidantes , Artocarpus , Curcumina , Embalaje de Alimentos , Almidón , Artocarpus/química , Curcumina/química , Curcumina/farmacología , Almidón/química , Antioxidantes/farmacología , Antioxidantes/química , Concentración de Iones de Hidrógeno , Embalaje de Alimentos/métodos , Antibacterianos/farmacología , Antibacterianos/química , Animales , Solubilidad
11.
Eur J Med Chem ; 272: 116436, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704935

RESUMEN

Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.


Asunto(s)
Úlcera Péptica , Fitoterapia , Humanos , Úlcera Péptica/tratamiento farmacológico , Química Farmacéutica , Antiulcerosos/química , Antiulcerosos/farmacología , Animales
12.
Curr Top Med Chem ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39248066

RESUMEN

Cancer is a disease that affects people of all ages, socioeconomic backgrounds, genders, and demographics. It places a significant burden not just on those who are diagnosed but also on their families and communities. Targeted therapeutic medications have surpassed more conventional forms of chemotherapy in terms of both their effectiveness and safety, which leads to their rapid ascent to the forefront of cancer treatment. A growing number of small molecules have been created for the treatment of cancer, and several of these drugs have been approved to be sold in the market by the Food and Drug Administration of the United States. Small molecule targeted anticancer therapies have made significant progress in recent years, yet they continue to struggle with a number of obstacles, including a low response rate and drug resistance. We have carried out an exhaustive study on approved small-molecule targeted anticancer medications, as well as important drug candidates. This review describes the significance of approved anticancer drugs from 2021 to 2024, clinically active anticancer drugs, and the methods used for their synthesis.

13.
Artículo en Inglés | MEDLINE | ID: mdl-38984573

RESUMEN

Lamiaceae (Labiatae) is a medicinally significant plant family featuring key species like Salvia aegyptiaca, S. cabulica, S. coccinea, S. glutinosa, S. officinalis, S. haematodes, S. hians, S. lanata, S. macrosiphon, S. moorcroftiana, S. spinosa, S. sclarea, and S. plebeia. These species exhibit diverse pharmacological activities attributed to essential oils and phytochemi-cals, including antioxidant, antiasthmatic, antitumor, anti-inflammatory, analgesic, etc. This re-view covers extensive phytomedicinal aspects of some important plants of the genus Salvia.

14.
Int J Biol Macromol ; 275(Pt 1): 133571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38960243

RESUMEN

Prolyl oligopeptidase (POP) is a compelling therapeutic target associated with aging and neurodegenerative disorders due to its pivotal role in neuropeptide processing. Despite initial promise demonstrated by early-stage POP inhibitors, their progress in clinical trials has been halted at Phase I or II. This impediment has prompted the pursuit of novel inhibitors. The current study seeks to contribute to the identification of efficacious POP inhibitors through the design, synthesis, and comprehensive evaluation (both in vitro and in silico) of thiazolyl thiourea derivatives (5a-r). In vitro experimentation exhibited that the compounds displayed significant higher potency as POP inhibitors. Compound 5e demonstrated an IC50 value of 16.47 ± 0.54 µM, representing a remarkable potency. A meticulous examination of the structure-activity relationship indicated that halogen and methoxy substituents were the most efficacious. In silico investigations delved into induced fit docking, pharmacokinetics, and molecular dynamics simulations to elucidate the intricate interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, our pharmacokinetic assessments confirmed that the majority of the synthesized compounds possess attributes conducive to potential drug development.


Asunto(s)
Simulación del Acoplamiento Molecular , Prolil Oligopeptidasas , Serina Endopeptidasas , Tiourea , Tiourea/química , Tiourea/farmacología , Tiourea/síntesis química , Tiourea/análogos & derivados , Relación Estructura-Actividad , Humanos , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Simulación de Dinámica Molecular , Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/farmacología , Inhibidores de Serina Proteinasa/síntesis química , Modelos Moleculares , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Dominio Catalítico , Técnicas de Química Sintética
15.
Future Med Chem ; 16(11): 1053-1073, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708686

RESUMEN

Aim: This study focused on designing and synthesizing novel derivatives of 3,5,8-trisubstituted coumarin. Results: The synthesized compounds, particularly compound 5, exhibited significant cytotoxic effects on MCF-7 cells, surpassing staurosporine, and reduced toxicity toward MCF-10A cells, highlighting potential pharmacological advantages. Further, compound 5 altered the cell cycle and significantly increased apoptosis in MCF-7 cells, involving both early (41.7-fold) and late stages (33-fold), while moderately affecting necrotic signaling. The antitumor activity was linked to a notable reduction (4.78-fold) in topoisomerase IIß expression. Molecular modeling indicated compound 5's strong affinity for EGFR, human EGF2 and topoisomerase II proteins. Conclusion: These findings highlight compound 5 as a multifaceted antitumor agent for breast cancer.


[Box: see text].


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias de la Mama , Proliferación Celular , Cumarinas , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Femenino , Apoptosis/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Estructura-Actividad , Células MCF-7 , Estructura Molecular , Línea Celular Tumoral , Ciclo Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inhibidores
16.
Curr Med Chem ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39318003

RESUMEN

INTRODUCTION: Prolyl oligopeptidase (POP) is a pivotal druggable target implicated in diverse biological processes and linked to the development of various ailments, including neurodegenerative disorders. While conventional peptide-based inhibitors have been a centerpiece, their limitations, such as restricted bioavailability, necessitate exploration of non-peptidic inhibitors for their therapeutic potential. METHOD: This study focuses on designing, synthesizing, and assessing morpholine-based hydrazones targeting the catalytic serine residue of POP. The hydrazones (5a-o), reported as moderately potent analogs compared to the renowned Z-Pro-Prolinal, demonstrated in vitro POP inhibition with IC50 values ranging from 13.60 ± 2.51 to 36.51 ± 1.82 µM. The derivative 5h, with an IC50 of 13.60 ± 2.51 µM, emerged as the most potent inhibitor. RESULTS: Moreover, the in vitro kinetic study of compound 5h indicated that it exhibited concentration-dependent type of inhibition. in silico docking studies of 5h revealed robust interactions in the POP enzyme's active site, yielding a docking score of -6.30 Kcal/- mol, consistent with experimental results. CONCLUSION: All findings underscored the potential of synthesized derivatives for drug development.

17.
RSC Adv ; 14(30): 21355-21374, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38979463

RESUMEN

Carbonic anhydrase CA-II enzyme is essential for maintaining homeostasis in several processes, including respiration, lipogenesis, gluconeogenesis, calcification, bone resorption, and electrolyte balance due to its vital function within cellular processes. Herein, we screened 25 newly synthesized thiazole derivatives and assessed their inhibitory potential against the zinc-containing carbonic anhydrase CA-II enzyme. Intriguingly, derivatives of thiazole exhibited varying degrees of inhibitory action against CA-II. The distinctive attribute of these compounds is that they can attach to the CA-II binding site and block its action. Morpholine based thiazoles can be strategically modified to improve bovine CA-II inhibitor binding affinity, selectivity, and pharmacokinetics. Thiazole and morpholine moieties can boost inhibitory efficacy and selectivity over other calcium-binding proteins by interacting with target bovine CA-II binding sites. The derivatives 23-26 exhibited greater affinity when compared to the standard acetazolamide. Furthermore, kinetic study of the most potent compound 24 was performed, which exhibited concentration dependent inhibition with a K i value of 9.64 ± 0.007 µM. Molecular docking, MD simulation and QSAR analysis was also carried out to elucidate the interactions, orientation, and conformational changes of these compounds within the active site of the enzyme. Moreover, pharmacokinetic assessments showed that most of the compounds possess attributes conducive to potential drug development.

18.
Sci Rep ; 14(1): 12588, 2024 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822113

RESUMEN

The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2 , Bases de Schiff , Glicoproteína de la Espiga del Coronavirus , Urea , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Bases de Schiff/química , Bases de Schiff/farmacología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Antivirales/química , Urea/farmacología , Urea/análogos & derivados , Urea/química , Humanos , Tratamiento Farmacológico de COVID-19 , COVID-19/virología
19.
Curr Comput Aided Drug Des ; 19(2): 108-122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36177631

RESUMEN

BACKGROUND: Hydrazone and its azomethine (-NHN=CH-) derivatives are widely reported for their immense pharmacological potential. They have also been reported to possess potent anti-tuberculosis, anti-malarial, anti-inflammatory, and anti-oxidant activities. Considering their pharmacological significance, we herein synthesized a set of 10 hydrazones (1S-10S) using green, biodegradable chitosan and HCl as catalyst. METHODS: All synthesized compounds were characterized using modern spectroscopic techniques, including Nuclear magnetic resonance, 1H-/13C-NMR; Fourier transform infrared spectroscopy (FT-IR); Ultraviolet-visible spectroscopy; Mass spectrometry (m/z), etc. Synthesized compounds were in silico screened using molecular docking, dynamics, pharmacokinetics, theoretical properties, and common pharmacophore analysis. Moreover, we also subjected all compounds to DPPH radical scavenging assay, protein denaturation assay, Trypan Blue assay for cell viability assessments, ß-hematin assay for hemozoin inhibition analysis and standard antimicrobial analysis. RESULTS: Our results suggested that the synthesized compound 2S had high potency against studied microbial strains (minimum MIC = 3.12 µg/mL). Our antioxidant analysis for 1S-10S revealed that our compounds had radical scavenging effects ranging from 25.1-80.3 %. Compounds 2S exhibited % cell viability of 68.92% (at 100 µg concentration of sample), while the same compound retained anti-inflammatory % inhibition at 62.16 %. Compound 2S was obtained as the best docked molecule, with a docking score of -5.32 Kcal/mol with target pdb id: 1d7u protein. Molecular dynamics simulation and normal mode analysis for 100 ns for 1d7u:2S retained good stability. Finally, in silico pharmacokinetics, theoretical properties and pharmacophoric features were assessed. CONCLUSION: In summary, synthesized hydrazone exhibited a good biological profile according to in silico and in vitro studies. However, further in vivo studies are required that may shed more insights on its potencies.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Antioxidantes/química , Azul de Tripano , Simulación del Acoplamiento Molecular , Hidrazonas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinflamatorios/farmacología , Relación Estructura-Actividad
20.
Heliyon ; 9(4): e15545, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37128337

RESUMEN

This study examines the potential of Cannabis sativa L. plants to be repurposed as therapeutic agents for cancer treatment through designing of hybrid Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). A set of 50 phytochemicals was taken from Cannabinoids and Terpenes and subjected for screening using Semi-flexible and Flexible Molecular Docking methods, MM-GBSA free binding energy computations, and pharmacokinetic/pharmacodynamic (ADME-Tox) predictions. Nine promising phytochemicals, Cannabidiolic acid (CBDA), Cannabidiol (CBD), Tetrahydrocannabivarin (THCV), Dronabinol (Δ-9-THC), Delta-8-Tetrahydrocannabinol (Δ-8-THC), Cannabicyclol (CBL), Delta9-tetrahydrocannabinolic acid (THCA), Beta-Caryophyllene (BCP), and Gamma-Elemene (γ-Ele) were identified as potential EGFR-TKIs natural product candidates for cancer therapy. To further validate these findings, a set of Molecular Dynamics simulations were conducted over a 200 ns trajectory. This hybrid early drug discovery screening strategy has the potential to yield a new generation of EGFR-TKIs based on natural cannabis products, suitable for cancer therapy. In addition, the application of this computational strategy in the virtual screening of both natural and synthetic chemical libraries could support the discovery of a wide range of lead drug agents to address numerous diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA