Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34244442

RESUMEN

Here, we report that important regulators of cilia formation and ciliary compartment-directed protein transport function in secretion polarity. Mutations in cilia genes cep290 and bbs2, involved in human ciliopathies, affect apical secretion of Cochlin, a major otolith component and a determinant of calcium carbonate crystallization form. We show that Cochlin, defective in human auditory and vestibular disorder, DFNA9, is secreted from small specialized regions of vestibular system epithelia. Cells of these regions secrete Cochlin both apically into the ear lumen and basally into the basal lamina. Basally secreted Cochlin diffuses along the basal surface of vestibular epithelia, while apically secreted Cochlin is incorporated into the otolith. Mutations in a subset of ciliopathy genes lead to defects in Cochlin apical secretion, causing abnormal otolith crystallization and behavioral defects. This study reveals a class of ciliary proteins that are important for the polarity of secretion and delineate a secretory pathway that regulates biomineralization.


Asunto(s)
Ciliopatías/genética , Membrana Otolítica/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Síndrome de Bardet-Biedl/genética , Secuencia de Bases , Cilios/metabolismo , Cristalización , Epistasis Genética , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Homocigoto , Mutación/genética , Fenotipo , Proteínas de Pez Cebra/genética
2.
J Cell Sci ; 134(6)2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33589494

RESUMEN

In vertebrate photoreceptors, opsins are highly concentrated in a morphologically distinct ciliary compartment known as the outer segment (OS). Opsin is synthesized in the cell body and transported to the OS at a remarkable rate of 100 to 1000 molecules per second. Opsin transport defects contribute to photoreceptor loss and blindness in human ciliopathies. Previous studies revealed that the rhodopsin C-terminal tail, of 44 amino acids, is sufficient to mediate OS targeting in Xenopus photoreceptors. Here, we show that, although the Xenopus C-terminus retains this function in zebrafish, the homologous zebrafish sequence is not sufficient to target opsin to the OS. This functional difference is largely caused by a change of a single amino acid present in Xenopus but not in other vertebrates examined. Furthermore, we find that sequences in the third intracellular cytoplasmic loop (IC3) and adjacent regions of transmembrane helices 6 and 7 are also necessary for opsin transport in zebrafish. Combined with the cytoplasmic tail, these sequences are sufficient to target opsin to the ciliary compartment.


Asunto(s)
Rodopsina , Pez Cebra , Animales , Humanos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Transporte de Proteínas , Rodopsina/genética , Rodopsina/metabolismo , Segmento Externo de la Célula en Bastón/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
3.
Dev Dyn ; 248(6): 410-425, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980582

RESUMEN

BACKGROUND: Cilia are essential for morphogenesis and maintenance of many tissues. Loss-of-function of cilia in early Zebrafish development causes a range of vascular defects, including cerebral hemorrhage and reduced arterial vascular mural cell coverage. In contrast, loss of endothelial cilia in mice has little effect on vascular development. We therefore used a conditional rescue approach to induce endothelial cilia ablation after early embryonic development and examined the effect on vascular development and mural cell development in postembryonic, juvenile, and adult Zebrafish. RESULTS: ift54(elipsa)-mutant Zebrafish are unable to form cilia. We rescued cilia formation and ameliorated the phenotype of ift54 mutants using a novel Tg(ubi:loxP-ift54-loxP-myr-mcherry,myl7:EGFP)sh488 transgene expressing wild-type ift54 flanked by recombinase sites, then used a Tg(kdrl:cre)s898 transgene to induce endothelial-specific inactivation of ift54 at postembryonic ages. Fish without endothelial ift54 function could survive to adulthood and exhibited no vascular defects. Endothelial inactivation of ift54 did not affect development of tagln-positive vascular mural cells around either the aorta or the caudal fin vessels, or formation of vessels after tail fin resection in adult animals. CONCLUSIONS: Endothelial cilia are not essential for development and remodeling of the vasculature in juvenile and adult Zebrafish when inactivated after embryogenesis.


Asunto(s)
Endotelio Vascular , Animales
4.
J Biol Chem ; 291(47): 24465-24474, 2016 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-27681595

RESUMEN

In the retina, aberrant opsin transport from cell bodies to outer segments leads to retinal degenerative diseases such as retinitis pigmentosa. Opsin transport is facilitated by the intraflagellar transport (IFT) system that mediates the bidirectional movement of proteins within cilia. In contrast to functions of the anterograde transport executed by IFT complex B (IFT-B), the precise functions of the retrograde transport mediated by IFT complex A (IFT-A) have not been well studied in photoreceptor cilia. Here, we analyzed developing zebrafish larvae carrying a null mutation in ift122 encoding a component of IFT-A. ift122 mutant larvae show unexpectedly mild phenotypes, compared with those of mutants defective in IFT-B. ift122 mutants exhibit a slow onset of progressive photoreceptor degeneration mainly after 7 days post-fertilization. ift122 mutant larvae also develop cystic kidney but not curly body, both of which are typically observed in various ciliary mutants. ift122 mutants display a loss of cilia in the inner ear hair cells and nasal pit epithelia. Loss of ift122 causes disorganization of outer segment discs. Ectopic accumulation of an IFT-B component, ift88, is observed in the ift122 mutant photoreceptor cilia. In addition, pulse-chase experiments using GFP-opsin fusion proteins revealed that ift122 is required for the efficient transport of opsin and the distal elongation of outer segments. These results show that IFT-A is essential for the efficient transport of outer segment proteins, including opsin, and for the survival of retinal photoreceptor cells, rendering the ift122 mutant a unique model for human retinal degenerative diseases.


Asunto(s)
Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneración Retiniana/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cilios/genética , Cilios/metabolismo , Células Ciliadas Auditivas Internas/metabolismo , Humanos , Mutación , Opsinas/genética , Transporte de Proteínas/genética , Degeneración Retiniana/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
EMBO J ; 30(13): 2532-44, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21602787

RESUMEN

Cilia are required for the development and function of many organs. Efficient transport of protein cargo along ciliary axoneme is necessary to sustain these processes. Despite its importance, the mode of interaction between the intraflagellar ciliary transport (IFT) mechanism and its cargo proteins remains poorly understood. Our studies demonstrate that IFT particle components, and a Meckel-Gruber syndrome 1 (MKS1)-related, B9 domain protein, B9d2, bind each other and contribute to the ciliary localization of Inversin (Nephrocystin 2). B9d2, Inversin, and Nephrocystin 5 support, in turn, the transport of a cargo protein, Opsin, but not another photoreceptor ciliary transmembrane protein, Peripherin. Interestingly, the components of this mechanism also contribute to the formation of planar cell polarity in mechanosensory epithelia. These studies reveal a molecular mechanism that mediates the transport of selected ciliary cargos and is of fundamental importance for the differentiation and survival of sensory cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Cilios/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Animales , Animales Modificados Genéticamente , Transporte Biológico Activo/fisiología , Cilios/genética , Cilios/fisiología , Proteínas del Citoesqueleto , Humanos , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/fisiología , Organogénesis/genética , Organogénesis/fisiología , Unión Proteica , Transporte de Proteínas , Proteínas/metabolismo , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
6.
Proc Natl Acad Sci U S A ; 109(7): 2388-93, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308397

RESUMEN

The differentiation of cilia is mediated by kinesin-driven transport. As the function of kinesins in vertebrate ciliogenesis is poorly characterized, we decided to determine the role of kinesin-2 family motors--heterotrimeric kinesin-II and the homodimeric Kif17 kinesin--in zebrafish cilia. We report that kif17 is largely dispensable for ciliogenesis; kif17 homozygous mutant animals are viable and display subtle morphological defects of olfactory cilia only. In contrast to that, the kif3b gene, encoding a heterotrimeric kinesin subunit, is necessary for cilia differentiation in most tissues, although exceptions exist, and include photoreceptors and a subset of hair cells. Cilia of these cell types persist even in kif3b/kif17 double mutants. Although we have not observed a functional redundancy of kif3b and kif17, kif17 is able to substitute for kif3b in some cilia. In contrast to kif3b/kif17 double mutants, simultaneous interference with kif3b and kif3c leads to the complete loss of photoreceptor and hair cell cilia, revealing redundancy of function. This is in agreement with the idea that Kif3b and Kif3c motor subunits form complexes with Kif3a, but not with each other. Interestingly, kif3b mutant photoreceptor cilia differentiate with a delay, suggesting that kif3c, although redundant with kif3b at later stages of differentiation, is not active early in photoreceptor ciliogenesis. Consistent with that, the overexpression of kif3c in kif3b mutants rescues early photoreceptor cilia defects. These data reveal unexpected diversity of functional relationships between vertebrate ciliary kinesins, and show that the repertoire of kinesin motors changes in some cilia during their differentiation.


Asunto(s)
Cilios , Cinesinas/metabolismo , Cinesinas/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Homocigoto , Inmunohistoquímica , Cinesinas/genética , Mutación , Reacción en Cadena de la Polimerasa , Pez Cebra
7.
PLoS Genet ; 8(2): e1002503, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383891

RESUMEN

Proper assignment of cellular fates relies on correct interpretation of Wnt and Hedgehog (Hh) signals. Members of the Wnt Inhibitory Factor-1 (WIF1) family are secreted modulators of these extracellular signaling pathways. Vertebrate WIF1 binds Wnts and inhibits their signaling, but its Drosophila melanogaster ortholog Shifted (Shf) binds Hh and extends the range of Hh activity in the developing D. melanogaster wing. Shf activity is thought to depend on reinforcing interactions between Hh and glypican HSPGs. Using zebrafish embryos and the heterologous system provided by D. melanogaster wing, we report on the contribution of glypican HSPGs to the Wnt-inhibiting activity of zebrafish Wif1 and on the protein domains responsible for the differences in Wif1 and Shf specificity. We show that Wif1 strengthens interactions between Wnt and glypicans, modulating the biphasic action of glypicans towards Wnt inhibition; conversely, glypicans and the glypican-binding "EGF-like" domains of Wif1 are required for Wif1's full Wnt-inhibiting activity. Chimeric constructs between Wif1 and Shf were used to investigate their specificities for Wnt and Hh signaling. Full Wnt inhibition required the "WIF" domain of Wif1, and the HSPG-binding EGF-like domains of either Wif1 or Shf. Full promotion of Hh signaling requires both the EGF-like domains of Shf and the WIF domains of either Wif1 or Shf. That the Wif1 WIF domain can increase the Hh promoting activity of Shf's EGF domains suggests it is capable of interacting with Hh. In fact, full-length Wif1 affected distribution and signaling of Hh in D. melanogaster, albeit weakly, suggesting a possible role for Wif1 as a modulator of vertebrate Hh signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Glipicanos/fisiología , Proteínas Hedgehog/fisiología , Proteínas Represoras , Transducción de Señal/fisiología , Proteínas de Pez Cebra , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/fisiología , Proteínas Wnt/fisiología , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/fisiología
8.
Nat Genet ; 31(2): 150-7, 2002 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-11992120

RESUMEN

A layered organization of cells is a common architectural feature of many neuronal formations. Mutations of the zebrafish gene nagie oko (nok) produce a severe disruption of retinal architecture, indicating a key role for this locus in neuronal patterning. We show that nok encodes a membrane-associated guanylate kinase-family scaffolding protein. Nok localizes to the vicinity of junctional complexes in retinal neuroepithelium and in the photoreceptor cell layer. Mosaic analysis indicates that the nok retinal patterning phenotype is not cell-autonomous. We propose that nok function in patterning of postmitotic neurons is mediated through neuroepithelial cells and is necessary for guiding neurons to their proper destinations in retinal laminae.


Asunto(s)
Nucleósido-Fosfato Quinasa/fisiología , Retina/embriología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Diferenciación Celular/genética , Guanilato-Quinasas , Uniones Intercelulares/fisiología , Datos de Secuencia Molecular , Morfogénesis/genética , Nucleósido-Fosfato Quinasa/genética , Retina/fisiología , Pez Cebra/embriología , Pez Cebra/genética
9.
Development ; 136(17): 2955-64, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19666822

RESUMEN

Although microtubule-dependent motors are known to play many essential functions in eukaryotic cells, their role in the context of the developing vertebrate embryo is less well understood. Here we show that the zebrafish ale oko (ako) locus encodes the p50 component of the dynactin complex. Loss of ako function results in a degeneration of photoreceptors and mechanosensory hair cells. Additionally, mutant Müller cells lose apical processes and their perikarya translocate rapidly towards the vitreal surface of the retina. This is accompanied by the accumulation of the apical determinants Nok and Has/aPKC in their cell bodies. ako is required cell-autonomously for the maintenance of the apical process but not for cell body positioning in Müller glia. At later stages, the retinotectal projection also degenerates in ako mutants. These results indicate that the p50 component of the dynactin complex is essential for the survival of sensory neurons and the maintenance of ganglion cell axons, and functions as a major determinant of apicobasal polarity in retinal radial glia.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Neuroglía/citología , Retina/citología , Células Receptoras Sensoriales/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Diferenciación Celular/fisiología , Polaridad Celular , Supervivencia Celular , Complejo Dinactina , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Neuroglía/metabolismo , Fenotipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Receptoras Sensoriales/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Células Madre/citología , Células Madre/metabolismo , Pez Cebra/anatomía & histología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
10.
Sci Rep ; 11(1): 7899, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846423

RESUMEN

The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function. Using stochastic optical reconstruction microscopy (STORM) and computational averaging, we show that seven TZ, nine IFT, three Bardet-Biedl syndrome (BBS), and one centrosomal protein, form 9-clustered rings at the cilium base of a ciliate Tetrahymena thermophila. In the axial dimension, analyzed TZ proteins localize to a narrow region of about 30 nm while IFT proteins dock approximately 80 nm proximal to TZ. Moreover, the IFT-A subcomplex is positioned peripheral to the IFT-B subcomplex and the investigated BBS proteins localize near the ciliary membrane. The positioning of the HA-tagged N- and C-termini of the selected proteins enabled the prediction of the spatial orientation of protein particles and likely cargo interaction sites. Based on the obtained data, we built a comprehensive 3D-model showing the arrangement of the investigated ciliary proteins.


Asunto(s)
Cilios/metabolismo , Flagelos/metabolismo , Microscopía/métodos , Tetrahymena/metabolismo , Síndrome de Bardet-Biedl/metabolismo , Transporte Biológico , Ciliopatías/genética , Ciliopatías/patología , Humanos , Mutación/genética , Proteínas Protozoarias/metabolismo
11.
Front Cell Dev Biol ; 9: 676214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34268305

RESUMEN

Cilia are evolutionarily highly conserved organelles with important functions in many organs. The extracellular component of the cilium protruding from the plasma membrane comprises an axoneme composed of microtubule doublets, arranged in a 9 + 0 conformation in primary cilia or 9 + 2 in motile cilia. These microtubules facilitate transport of intraflagellar cargoes along the axoneme. They also provide structural stability to the cilium, which may play an important role in sensory cilia, where signals are received from the movement of extracellular fluid. Post-translational modification of microtubules in cilia is a well-studied phenomenon, and acetylation on lysine 40 (K40) of alpha tubulin is prominent in cilia. It is believed that this modification contributes to the stabilization of cilia. Two classes of enzymes, histone acetyltransferases and histone deacetylases, mediate regulation of tubulin acetylation. Here we use a genetic approach, immunocytochemistry and behavioral tests to investigate the function of tubulin deacetylases in cilia in a zebrafish model. By mutating three histone deacetylase genes (Sirt2, Hdac6, and Hdac10), we identify an unforeseen role for Hdac6 and Sirt2 in cilia. As expected, mutation of these genes leads to increased acetylation of cytoplasmic tubulin, however, surprisingly it caused decreased tubulin acetylation in cilia in the developing eye, ear, brain and kidney. Cilia in the ear and eye showed elevated levels of mono-glycylated tubulin suggesting a compensatory mechanism. These changes did not affect the length or morphology of cilia, however, functional defects in balance was observed, suggesting that the level of tubulin acetylation may affect function of the cilium.

12.
BMC Genet ; 11: 102, 2010 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21070663

RESUMEN

BACKGROUND: The size of the vertebrate eye and the retina is likely to be controlled at several stages of embryogenesis by mechanisms that affect cell cycle length as well as cell survival. A mutation in the zebrafish out of sight (out) locus results in a particularly severe reduction of eye size. The goal of this study is to characterize the outm233 mutant, and to determine whether mutations in the out gene cause microphthalmia in humans. RESULTS: In this study, we show that the severe reduction of eye size in the outm233 mutant is caused by a mutation in the zebrafish gdf6a gene. Despite the small eye size, the overall retinal architecture appears largely intact, and immunohistochemical studies confirm that all major cell types are present in outm233 retinae. Subtle cell fate and patterning changes are present predominantly in amacrine interneurons. Acridine orange and TUNEL staining reveal that the levels of apoptosis are abnormally high in outm233 mutant eyes during early neurogenesis. Mutation analysis of the GDF6 gene in 200 patients with microphthalmia revealed amino acid substitutions in four of them. In two patients additional skeletal defects were observed. CONCLUSIONS: This study confirms the essential role of GDF6 in the regulation of vertebrate eye size. The reduced eye size in the zebrafish outm233 mutant is likely to be caused by a transient wave of apoptosis at the onset of neurogenesis. Amino acid substitutions in GDF6 were detected in 4 (2%) of 200 patients with microphthalmia. In two patients different skeletal defects were also observed, suggesting pleitrophic effects of GDF6 variants. Parents carrying these variants are asymptomatic, suggesting that GDF6 sequence alterations are likely to contribute to the phenotype, but are not the sole cause of the disease. Variable expressivity and penetrance suggest a complex non-Mendelian inheritance pattern where other genetic factors may influence the outcome of the phenotype.


Asunto(s)
Ojo/embriología , Factor 6 de Diferenciación de Crecimiento/genética , Microftalmía/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Sustitución de Aminoácidos , Animales , Apoptosis , Proliferación Celular , Mapeo Cromosómico , Clonación Molecular , Regulación del Desarrollo de la Expresión Génica , Humanos , Mutación , Tamaño de los Órganos , Fenotipo , Pez Cebra/embriología
13.
Dev Dyn ; 238(9): 2115-38, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19582864

RESUMEN

Vision mediating photoreceptor cells are specialized light-sensitive neurons in the outer layer of the vertebrate retina. The human retina contains approximately 130 million of such photoreceptors, which enable images of the external environment to be captured at high resolution and high sensitivity. Rod and cone photoreceptor subtypes are further specialized for sensing light in low and high illumination, respectively. To enable visual function, these photoreceptors have developed elaborate morphological domains for the detection of light (outer segments), for changing cell shape (inner segments), and for communication with neighboring retinal neurons (synaptic terminals). Furthermore, rod and cone subtypes feature unique morphological variations of these specialized characteristics. Here, we review the major aspects of vertebrate photoreceptor morphology and key genetic mechanisms that drive their formation. These mechanisms are necessary for cell differentiation as well as function. Their defects lead to cell death.


Asunto(s)
Células Fotorreceptoras de Vertebrados/citología , Células Fotorreceptoras de Vertebrados/fisiología , Animales , Diferenciación Celular/fisiología , Forma de la Célula/fisiología , Humanos , Modelos Biológicos , Morfogénesis , Células Fotorreceptoras de Vertebrados/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
14.
Curr Biol ; 16(10): 945-57, 2006 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-16713951

RESUMEN

BACKGROUND: Polarity is an essential attribute of most eukaryotic cells. One of the most prominent features of cell polarity in many tissues is the subdivision of cell membrane into apical and basolateral compartments by a belt of cell junctions. The proper formation of this subdivision is of key importance. In sensory cells, for example, the apical membrane compartment differentiates specialized structures responsible for the detection of visual, auditory, and olfactory stimuli. In other tissues, apical specializations are responsible for the propagation of fluid flow. Despite its importance, the role of genetic determinants of apico-basal polarity in vertebrate embryogenesis remains poorly investigated. RESULTS: We show that zebrafish oko meduzy (ome) locus encodes a crumbs gene homolog, essential for the proper apico-basal polarity of neural tube epithelia. Two ome paralogs, crb2b and crb3a, promote the formation of apical cell features: photoreceptor inner segments and cilia in renal and auditory systems. The motility of cilia is defective following the impairment of crb2b function. Apical surface defects in ome- and crb2b-deficient animals are associated with profound disorganization of neuronal architecture and with the formation of pronephric cysts, respectively. Unexpectedly, despite differences in their structure and expression patterns, crumbs genes are, at least partially, functionally interchangeable. CONCLUSIONS: ome and related crumbs genes are necessary for the formation of gross morphological features in several organs, including the CNS and the renal system. On the cellular level, crumbs genes regulate the formation of both ciliary and nonciliary apical membrane compartment.


Asunto(s)
Polaridad Celular/fisiología , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Neuroepiteliales/citología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular/fisiología , Polaridad Celular/genética , Cilios/fisiología , Cilios/ultraestructura , Proteínas de Drosophila/genética , Genes del Desarrollo , Células Ciliadas Auditivas/embriología , Proteínas de la Membrana/genética , Nefronas/embriología , Células Fotorreceptoras de Vertebrados/citología , Homología de Secuencia de Ácido Nucleico , Pez Cebra/genética
15.
Genetics ; 180(4): 2081-94, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18854586

RESUMEN

The centriole is the core structure of centrosome and cilium. Failure to restrict centriole duplication to once per cell cycle has serious consequences and is commonly observed in cancer. Despite its medical importance, the mechanism of centriole formation is poorly understood. Asl was previously reported to be a centrosomal protein essential for centrosome function. Here we identify mecD, a severe loss-of-function allele of the asl gene, and demonstrate that it is required for centriole and cilia formation. Similarly, Cep152, the Asl ortholog in vertebrates, is essential for cilia formation and its function can be partially rescued by the Drosophila Asl. The study of Asl localization suggests that it is closely associated with the centriole wall, but is not part of the centriole structure. By analyzing the biogenesis of centrosomes in cells depleted of Asl, we found that, while pericentriolar material (PCM) function is mildly affected, Asl is essential for daughter centriole formation. The clear absence of several centriolar markers in mecD mutants suggests that Asl is critical early in centriole duplication.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/genética , Animales , Animales Modificados Genéticamente , Centriolos/genética , Centriolos/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero/metabolismo , Técnica del Anticuerpo Fluorescente
16.
Dev Cell ; 49(2): 161-170, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-31014478

RESUMEN

Several recent studies have revealed that nuclei and cilia share molecular components implicated in DNA damage response, splicing, gene expression, and sub-compartmentalization of the cell. We review evidence that exchange of components between the nucleus and cilia is facilitated by the centrosome, which contributes both to the mitotic apparatus of the nucleus and to the cilia structure. Moreover, the centrosome and the pericentriolar material form condensates that share components with stress granules and P-bodies, membrane-less organelles enriched in RNA and RNA-processing proteins. These features may largely explain the origin of similar molecular mechanisms in nuclei and cilia.


Asunto(s)
Núcleo Celular/metabolismo , Cilios/genética , Cilios/metabolismo , Animales , Núcleo Celular/fisiología , Centrosoma/metabolismo , Cilios/fisiología , Daño del ADN/fisiología , Humanos , Mitosis/fisiología , Poro Nuclear/metabolismo , Empalme del ARN , Huso Acromático/metabolismo
17.
Neuron ; 42(5): 703-16, 2004 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15182712

RESUMEN

Cilia play diverse roles in vertebrate and invertebrate sensory neurons. We show that a mutation of the zebrafish oval (ovl) locus affects a component of the ciliary transport (IFT) mechanism, the IFT88 polypeptide. In mutant retina, cilia are generated but not maintained, producing the absence of photoreceptor outer segments. A loss of cilia also occurs in auditory hair cells and olfactory sensory neurons. In all three sense organs, cilia defects are followed by degeneration of sensory cells. Similar phenotypes are induced by the absence of the IFT complex B polypeptides, ift52 and ift57, but not by the loss of complex A protein, ift140. The degeneration of mutant photoreceptor cells is caused, at least partially, by the ectopic accumulation of opsins. These studies reveal an essential role for IFT genes in vertebrate sensory neurons and implicate the molecular components of intraflagellar transport in degenerative disorders of these cells.


Asunto(s)
Proteínas Portadoras/genética , Diferenciación Celular/fisiología , Supervivencia Celular/fisiología , Cilios/metabolismo , Neuronas Aferentes/citología , Proteínas Protozoarias/fisiología , Proteínas Algáceas/fisiología , Animales , Animales Modificados Genéticamente , Transporte Biológico/genética , Transporte Biológico/fisiología , Western Blotting/métodos , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Supervivencia Celular/genética , Mapeo Cromosómico , Clonación Molecular/métodos , Embrión de Mamíferos , Embrión no Mamífero , Flagelos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes , Humanos , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Etiquetado Corte-Fin in Situ/métodos , Proteínas Luminiscentes/metabolismo , Ratones , Microinyecciones , Microscopía Electrónica , Datos de Secuencia Molecular , Mutación , Neuronas Aferentes/ultraestructura , Faloidina , Fenotipo , Estimulación Luminosa , Proteínas de Plantas , Propidio , Proteínas Protozoarias/genética , ARN Mensajero/biosíntesis , Retina/metabolismo , Retina/ultraestructura , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Opsinas de Bastones/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Tubulina (Proteína)/metabolismo , Pez Cebra
18.
Mech Dev ; 124(7-8): 592-604, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17574823

RESUMEN

To advance the understanding of genetic mechanisms involved in the patterning and the differentiation of the vertebrate auditory system, we screened for mutations affecting ear development in the zebrafish larva. Fifteen recessive mutant alleles have been isolated and analyzed. The phenotypes of these mutants involve abnormalities in ear morphology, otolith formation, or both processes in parallel. Among morphological defects, we found mutations affecting early patterning of the otic vesicle, the morphogenesis of semicircular canals, and the expansion of the ear lumen. The two most severe mutant phenotypes involve the absence of anterior and posterior cristae, as well as a severely misshapen morphology of the ear. In the category of otolith mutants, we found defects in otolith formation, growth, and shape. As it proved to be the case in past screening efforts of this type, these mutant lines represent an asset in the studies of molecular mechanisms that regulate vertebrate ear development.


Asunto(s)
Oído/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/crecimiento & desarrollo , Animales , Tipificación del Cuerpo , Oído/anomalías , Oído/fisiología , Larva , Mutación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Mech Dev ; 124(7-8): 605-16, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17576052

RESUMEN

Cilia play key roles in many aspects of embryogenesis and adult physiology in vertebrates. Past genetic screens in zebrafish identified numerous defects of ciliogenesis, including several mutations in the components of the intraflagellar transport machinery. In contrast to previous studies, here we describe a collection of mutants that affect subpopulations of cilia. Mutant embryos are characterized by a shortening and an abnormal movement of kidney cilia, and in one case also a reduction of cilia length in the Kupffer's vesicle. In contrast to that, the cilia of sensory neurons, including photoreceptor cells, hair cells, and olfactory sensory cells, appear grossly intact. Motility defects of pronephric cilia vary in mutant strains from complete paralysis to an increased frequency of movement, and are associated with left-right asymmetry defects. While ciliary ultrastructure is normal in most mutants, one of the mutant loci is essential for the formation of proper microtubule architecture in the axoneme of pronephric cilia. Mutants characterized in this study reveal intriguing genetic differences between subpopulations of embryonic cilia, and provide an opportunity to study several aspects of cilia structure and function.


Asunto(s)
Nefronas/embriología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Tipificación del Cuerpo , Cilios/metabolismo , Mutación , Nefronas/anomalías , Pez Cebra/anomalías , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
20.
Biol Open ; 7(2)2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29437557

RESUMEN

The central nervous system (CNS) has specific barriers that protect the brain from potential threats and tightly regulate molecular transport. Despite the critical functions of the CNS barriers, the mechanisms underlying their development and function are not well understood, and there are very limited experimental models for their study. Claudin 5 is a tight junction protein required for blood brain barrier (BBB) and, probably, choroid plexus (CP) structure and function in vertebrates. Here, we show that the gene claudin 5a is the zebrafish orthologue with high fidelity expression, in the BBB and CP barriers, that demonstrates the conservation of the BBB and CP between humans and zebrafish. Expression of claudin 5a correlates with developmental tightening of the BBB and is restricted to a subset of the brain vasculature clearly delineating the BBB. We show that claudin 5a-expressing cells of the CP are ciliated ependymal cells that drive fluid flow in the brain ventricles. Finally, we find that CP development precedes BBB development and that claudin 5a expression occurs simultaneously with angiogenesis. Thus, our novel transgenic zebrafish represents an ideal model to study CNS barrier development and function, critical in understanding the mechanisms underlying CNS barrier function in health and disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA