Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 18(9): e1010385, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070313

RESUMEN

Stem cells are essential for the development and long-term maintenance of tissues and organisms. Preserving tissue homeostasis requires exquisite control of all aspects of stem cell function: cell potency, proliferation, fate decision and differentiation. RNA binding proteins (RBPs) are essential components of the regulatory network that control gene expression in stem cells to maintain self-renewal and long-term homeostasis in adult tissues. While the function of many RBPs may have been characterized in various stem cell populations, how these interact and are organized in genetic networks remains largely elusive. In this report, we show that the conserved RNA binding protein IGF2 mRNA binding protein (Imp) is expressed in intestinal stem cells (ISCs) and progenitors in the adult Drosophila midgut. We demonstrate that Imp is required cell autonomously to maintain stem cell proliferative activity under normal epithelial turnover and in response to tissue damage. Mechanistically, we show that Imp cooperates and directly interacts with Lin28, another highly conserved RBP, to regulate ISC proliferation. We found that both proteins bind to and control the InR mRNA, a critical regulator of ISC self-renewal. Altogether, our data suggests that Imp and Lin28 are part of a larger gene regulatory network controlling gene expression in ISCs and required to maintain epithelial homeostasis.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Intestinos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal
2.
J Basic Microbiol ; 64(10): e2400035, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39004868

RESUMEN

Nanomaterial synthesis is a growing study area because of its extensive range of uses. Nanoparticles' high surface-to-volume ratio and rapid interaction with various particles make them appealing for diverse applications. Traditional physical and chemical methods for creating metal nanoparticles are becoming outdated because they involve complex manufacturing processes, high energy consumption, and the formation of harmful by-products that pose major dangers to human health and the environment. Therefore, there is an increasing need to find alternative, cost-effective, dependable, biocompatible, and environmentally acceptable ways of producing nanoparticles. The process of synthesizing nanoparticles using microbes has become highly intriguing because of their ability to create nanoparticles of varying sizes, shapes, and compositions, each with unique physicochemical properties. Microbes are commonly used in nanoparticle production because they are easy to work with, can use low-cost materials, such as agricultural waste, are cheap to scale up, and can adsorb and reduce metal ions into nanoparticles through metabolic activities. Biogenic synthesis of nanoparticles provides a clean, nontoxic, ecologically friendly, and sustainable method using renewable ingredients for reducing metals and stabilizing nanoparticles. Nanomaterials produced by bacteria can serve as an effective pollution control method due to their many functional groups that can effectively target contaminants for efficient bioremediation, aiding in environmental cleanup. At the end of the paper, we will discuss the obstacles that hinder the use of biosynthesized nanoparticles and microbial-based nanoparticles. The paper aims to explore the sustainability of microorganisms in the burgeoning field of green nanotechnology.


Asunto(s)
Bacterias , Biotecnología , Consorcios Microbianos , Nanopartículas , Biotecnología/métodos , Bacterias/metabolismo , Nanopartículas/química , Biodegradación Ambiental , Nanopartículas del Metal/química , Nanotecnología
3.
Mol Biol Rep ; 50(11): 9453-9468, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37676432

RESUMEN

Osteoporosis is a metabolic bone disorder that over time results in bone loss and raises the risk of fracture. The condition is frequently silent and only becomes apparent when fractures develop. Osteoporosis is treated with pharmacotherapy as well as non-pharmacological therapies such as mineral supplements, lifestyle changes, and exercise routines. Herbal medicine is frequently used in clinical procedures because of its low risk of adverse effects and cost-effective therapeutic results. In the current review, we have used a thorough strategy to identify some known medicinal plants with anti-osteoporosis capabilities, their origin, active ingredients, and pharmacological information. Furthermore, several signaling pathways, such as the apoptotic pathway, transcription factors, the Wnt/-catenin signaling pathway, and others, are regulated by bioactive components and help to improve bone homeostasis. This review will provide a better understanding of the anti-osteoporotic effects of bioactive components and the concomitant modulations of signaling pathways.


Asunto(s)
Fracturas Óseas , Osteoporosis , Plantas Medicinales , Humanos , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Huesos/metabolismo , Medicina de Hierbas , Osteogénesis
4.
Environ Res ; 237(Pt 2): 116983, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37640091

RESUMEN

A microbial-driven approach for effluent treatment, recycling, and management of Pharmaceutical and Personal Care Products (PPCPs) has been undertaken to mitigate the menace of water contamination. Bioremediation processes are mainly considered the first preference in pharmaceutical wastewater recycling and management. PPCPs are reported as one of the primary sources of emerging contaminants in various water matrices, which raises concern and requires efficient management. Their widespread utilization, persistently high level, and resistance to breaking down make them one of the potentially dangerous compounds causing harm to the ecosystem. Continually increasing PPCPs level PPCPs contaminants in water bodies raised concern for human health as they can produce potential risks with harmful and untoward impacts on our health. PPCPs are composed of multiple diverse compounds used by humans and animals, which include biopharmaceuticals, vitamins and nutritional supplements, antibiotics, counter-prescription drugs, cosmetics products, and unused pharmaceutical products. Personal care products are found to be bioaccumulative, reduce water quality and potentially impact ecological health. However, continual exposure to PPCPs in aquatic organisms, impacts their endocrine function disruption, gene toxicity, and antibiotic resistance. Decreased water quality may result in an outbreak of various water-borne diseases, which could have acute or long-term health complications and may result in an outbreak of various water-borne diseases, which could have acute or long-term effects on public and community health. Polluted water consumption by humans and animals produces serious health hazards and increased susceptibility to water-borne diseases such as carcinogenic organic or inorganic contaminants and infectious pathogens present in water bodies. Many water resource recovery facilities working on various conventional and advanced methods involve the utilization of microbes for filtration and advanced oxidation processes. Therefore, there is an immense need for bioremediation techniques facilitated by mixed cultures of bacteria, algae, and other microbes that can be used as an alternative approach for removing pharmaceutical content from effluent. This review highlights the various sources of PPCPs and their impacts on soil and water bodies, resulting in bioaccumulation. Different techniques are utilized to detect PPCPs, and various control strategies imply controlling, recycling, and managing waste.

5.
Metab Brain Dis ; 38(1): 61-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36149588

RESUMEN

Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Células Endoteliales/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Encéfalo/patología
6.
J Basic Microbiol ; 62(3-4): 361-375, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34978081

RESUMEN

Removal of contaminants from wastewater is a big concern for the scientific community. Heavy metals are one of the major contaminants present in wastewater. Heavy metals such as Cd2+ , Pb2+ , Mn2+ , and so forth, are highly toxic and pose a serious threat to the environment due to their nonbiodegradable nature. With the advent of nanobiotechnology, heavy metal contaminants can be mitigated with the help of nanomaterials produced by eco-friendly methods. Specially designed bionanomaterials often exhibit properties such as increased shelf life, self-healing nature, adaptability in different environments, and cost-effectiveness, thus showing advantages over nanomaterials produced by physicochemical methods. Due to their high specificity and adsorption capacity, bionanomaterials can remove heavy metals present even in a very low concentration in wastewater. The use of bionanotechnology in their remediation paves a way for environmental sustainability and helps in cost reduction. This paper intends to discuss the nanobiotechnological approach for the remediation of heavy metals from wastewater. Furthermore, the paper also reviews some important nanomaterials and their potential applications in the depollution of heavy-metal contaminated wastewater.


Asunto(s)
Metales Pesados , Nanoestructuras , Adsorción , Biodegradación Ambiental , Metales Pesados/toxicidad , Aguas Residuales
7.
J Basic Microbiol ; 62(3-4): 296-309, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35132661

RESUMEN

Rapid industrialization is one of the intricate factors that is linked to the depletion of water resources and increased generation of wastewater. Due to various obstructions and impediments, such as ineffective treatment solutions, exorbitant prices, lack of basic amenities, insufficient financial assistance, and technical expertise, sustainable treatment of industrial effluents has become an onerous process in most parts of the world. The majority of current treatment solutions are conventional and outdated, and thus fall short to remove all the contaminants efficiently from the industrial wastewater. Moreover, poorly treated or untreated industrial effluents are indiscriminately dumped into water bodies such as lakes, ponds, and rivers, causing substantial health hazards to humans and animals and serious threats to the aquatic ecosystem. Thus, there is a need for highly efficient, cost-effective, and sustainable technologies for the treatment of industrial wastewater. Employment of microbial technologies such as microbial fuel cells and microalgal technologies, treatment of wastewater can be coupled with the production of bioelectricity and valuable biomass, respectively. Moreover, with nanofiltration and biochar technologies, the efficiency of the overall treatment procedure can be increased to a greater extent. The present review aims to highlight opportunities and challenges associated with some of the emerging trends in industrial wastewater research.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microalgas , Animales , Biomasa , Ecosistema , Aguas Residuales
8.
Molecules ; 27(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684455

RESUMEN

Neurodegenerative diseases (NDDs) are disorders that affect both the central and peripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tissue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease (PD). The formation of ß-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegenerative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the central nervous system (CNS), are affected. However, the inflammatory process is linked to several neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression. Unlike medical symptoms, which are just signs of a patient's health as expressed and perceived, biomarkers are reproducible and quantitative. Therefore, this current review will highlight and summarize the neurological disorders and their biomarkers.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/metabolismo , Biomarcadores , Humanos , Estudios Prospectivos
9.
FASEB J ; 34(9): 11421-11430, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32654316

RESUMEN

During oogenesis in the Drosophila ovary, numerous translational regulators promote the self-renewal or differentiation of stem cells. An intriguing question is how these regulators combine to execute translational regulation. Here, we study mechanisms for the posttranscriptional regulation of nos, a critical stem cell self-renewal factor in the Drosophila ovary; specifically, regulators that promote differentiation of the stem cell daughter. Previous studies showed that Bam, Bgcn, Mei-P26, and Sxl form a complex and repress nos expression through the nos 3'UTR. To further elucidate mechanistic processes of Nos translational regulation, we reconstituted nos repression in cultured Drosophila cells. We identify Ago1 and Brat as new members, and show that Ago1 acts through miRNA binding sites in the proximal region of the nos 3'UTR, whereas Sxl acts via an Sxl binding sequence in the distal region. Combining these findings with published reports, we propose that additional factors Bam, Bgcn, Mei-P26, and Brat are recruited to nos mRNAs through interaction with Ago1 and Sxl. These findings elucidate mechanisms of nos regulation by diverse translational repressors.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células Madre Oogoniales/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3'/genética , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Línea Celular , Linaje de la Célula/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Femenino , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo
11.
RSC Adv ; 14(44): 32142-32173, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39399261

RESUMEN

Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.

12.
Sci Rep ; 14(1): 14928, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942772

RESUMEN

Improved and contemporary agriculture relies heavily on pesticides, yet some can be quite persistent and have a stable chemical composition, posing a significant threat to the ecology. Removing harmful effects is upon their degradability. Biodegradation must be emphasized to lower pesticide degradation costs, especially in the soil. Here, a decision-making system was used to determine the best microbial strain for the biodegradation of the pyrethroid-contaminated soil. In this system, the criteria chosen as: pH (C1), Temp (C2), RPM (C3), Conc. (C4), Degradation (%) (C5) and Time required for degradation(hrs) (C6); and five alternatives were Bacillus (A1), Acinetobacter (A2), Escherichia (A3), Pseudomonas (A4), and Fusarium (A5). The best alternative was selected by applying the TOPSIS (technique for order performance by similarity to ideal solution) method, which evaluates based on their closeness to the ideal solution and how well they meet specific requirements. Among all the specified criteria, Acinetobacter (A2) was the best and optimal based on the relative closeness value (( R i ∗ ) = 0.740 (A2) > 0.544 (A5) > 0.480 (A1) > 0.403 (A4) > 0.296 (A3)). However, the ranking of the other alternatives is also obtained in the order Fusarium (A5), Bacillus (A1), Pseudomonas (A4), Escherichia (A3). Hence this study suggests Acinetobacter is the best microbial strain for biodegradation of pyrethroids; while least preference should be given to Escherichia. Acinetobacter, versatile metabolic nature with various xenobiotic compounds' degradation ability, is gram-negative, aerobic, coccobacilli, nonmotile, and nonspore forming bacteria. Due to less study about Acinetobacter it is not in that much frame as the other microorganisms. Hence, considering the Acinetobacter strain for the biodegradation study will give more optimal results than the other microbial strains. Novelty of this study, the TOPSIS method is applied first time in selecting the best microbial strain for the biodegradation of pyrethroid-contaminated soil, considering this selection process as multi-criteria decision-making (MCDM) problem.


Asunto(s)
Biodegradación Ambiental , Piretrinas , Microbiología del Suelo , Contaminantes del Suelo , Piretrinas/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacillus/metabolismo , Bacillus/genética , Fusarium/metabolismo , Toma de Decisiones , Pseudomonas/metabolismo , Pseudomonas/genética , Acinetobacter/metabolismo , Acinetobacter/genética
13.
Sci Rep ; 14(1): 20853, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242651

RESUMEN

Betula utilis exhibits intriguing characteristics and interactions with its environment and has specific adaptations that enable it to thrive in various water conditions. Drought has a prominent role in influencing the growth and development of vegetation, while temperature serves as a crucial determinant of species distribution in high-altitude environments. The investigation was centered on the eco-physiological dimension of B. utilis in areas near the treeline. Across different seasons, sites, and years, the most negative pre-dawn twig water potentials (ΨPD) and mid-day twig water potentials (ΨMD) were - 0.81 and - 1.24 MPa, respectively. The highest seasonal change (ΔΨ) in twig water potential (Ψtwig) was in the post-monsoon season. Osmotic potential at full turgor (Ψπ100) declined by - 0.66 MPa and osmotic potential at zero turgor (Ψπ0) declined by - 1.07 MPa. The highest leaf conductance (gw) of 380.26 mmol m-2 s-1 was measured in the afternoon. During the initiation of flowering, ΨPD of the twig was - 0.72 MPa and gradually rose to - 0.17 MPa by the end of the flowering period. This study provides key insight into the Ψ dynamics, leaf conductance, and phenology of B. utilis, highlighting its adaptation to changing environmental conditions and the need for effective management strategies to ensure the resilience and conservation of this Critically Endangered species.


Asunto(s)
Betula , Estaciones del Año , Agua , Agua/metabolismo , Betula/crecimiento & desarrollo , Hojas de la Planta/fisiología , Ecosistema , Altitud , Temperatura , Sequías
14.
Microbiol Res ; 285: 127758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38781787

RESUMEN

The role of the plant innate immune system in the defense and symbiosis processes becomes integral in a complex network of interactions between plants and fungi. An understanding of the molecular characterization of the plant innate immune system is crucial because it constitutes plants' self-defense shield against harmful fungi, while creating mutualistic relationships with beneficial fungi. Due to the plant-induced awareness and their complexity of interaction with fungi, sufficient assessment of the participation of the plant innate immune system in ecological balance, agriculture, and maintenance of an infinite ecosystem is mandatory. Given the current global challenge, such as the surge of plant-infectious diseases, and pursuit of sustainable forms of agriculture; it is imperative to understand the molecular language of communication between plants and fungi. That knowledge can be practically used in diverse areas, e.g., in agriculture, new tactics may be sought after to try new methods that boost crop receptiveness against fungal pathogens and reduce the dependence on chemical management. Also, it could boost sustainable agricultural practices via enhancing mycorrhizal interactions that promote nutrient absorption and optimum cropping with limited exposure of environmental contamination. Moreover, this review offers insights that go beyond agriculture and can be manipulated to boost plant conservation, environmental restoration, and quality understanding of host-pathogen interactions. Consequently, this specific review paper has offered a comprehensive view of the complex plant innate immune-based responses with fungi and the mechanisms in which they interact.


Asunto(s)
Hongos , Interacciones Huésped-Patógeno , Inmunidad Innata , Enfermedades de las Plantas , Inmunidad de la Planta , Plantas , Simbiosis , Hongos/inmunología , Plantas/inmunología , Plantas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Agricultura , Micorrizas/fisiología , Ecosistema
15.
Clin Chim Acta ; 559: 119687, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38663473

RESUMEN

Ovarian cancers (OC) are the most common, lethal, and stage-dependent cancers at the global level, specifically in female patients. Targeted therapies involve the administration of drugs that specifically target the alterations in tumour cells responsible for their growth, proliferation, and metastasis, with the aim of treating particular patients. Presently, within the realm of gynaecological malignancies, specifically in breast and OCs, there exist various prospective therapeutic targets encompassing tumour-intrinsic signalling pathways, angiogenesis, homologous-recombination deficit, hormone receptors, and immunologic components. Breast cancers are often detected in advanced stages, primarily due to the lack of a reliable screening method. However, various tumour markers have been extensively researched and employed to evaluate the condition, progression, and effectiveness of medication treatments for this ailment. The emergence of recent technological advancements in the domains of bioinformatics, genomics, proteomics, and metabolomics has facilitated the exploration and identification of hitherto unknown biomarkers. The primary objective of this comprehensive review is to meticulously investigate and analyze both established and emerging methodologies employed in the identification of tumour markers associated with OC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Ováricas , Humanos , Femenino , Biomarcadores de Tumor/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Terapia Molecular Dirigida
16.
Sci Rep ; 14(1): 20404, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223248

RESUMEN

The research introduces a novel method for creating drug-loaded hydrogel beads that target anti-aging, anti-oxidative, and anti-inflammatory effects, addressing the interconnected processes underlying various pathological conditions. The study focuses on the development of hydrogel beads containing anti-aging compounds, antioxidants, and anti-inflammatory drugs to effectively mitigate various processes. The synthesis, characterization and in vitro evaluations, and potential applications of these multifunctional hydrogel beads are discussed. A polymeric alginate-orange peel extract (1:1) hydrogel was synthesized for encapsulating fish oil. Beads prepared with variable fish oil concentrations (0.1, 0.3, and 0.5 ml) were characterized, showing no significant decrease in size i.e., 0.5 mm and a reduction in pore size from 23 to 12 µm. Encapsulation efficiency reached up to 98% within 2 min, with controlled release achieved upto 45 to 120 min with increasing oil concentration, indicating potential for sustained delivery. Fourier-transform infrared spectroscopy confirmed successful encapsulation by revealing peak shifting, interaction between constituents. In vitro degradation studies showed the hydrogel's biodegradability improved from 30 to 120 min, alongside anti-inflammatory, anti-oxidative, anti-collagenase and anti-elastase activities, cell proliferation rate enhanced after entrapping fish oil. In conclusion, the synthesized hydrogel beads are a promising drug delivery vehicle because they provide stable and effective oil encapsulation with controlled release for notable anti-aging and regenerative potential. Targeted delivery for inflammatory and oxidative stress-related illnesses is one set of potential uses. Further research may optimize this system for broader applications in drug delivery and tissue engineering.


Asunto(s)
Alginatos , Antioxidantes , Aceites de Pescado , Hidrogeles , Alginatos/química , Aceites de Pescado/química , Hidrogeles/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Humanos , Envejecimiento/efectos de los fármacos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Microesferas , Ratones
17.
Nanoscale ; 16(8): 3881-3914, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38353296

RESUMEN

The long noncoding RNAs (lncRNAs) comprise a wide range of RNA species whose length exceeds 200 nucleotides, which regulate the expression of genes and cellular functions in a wide range of organisms. Several diseases, including malignancy, have been associated with lncRNA dysregulation. Due to their functions in cancer development and progression, lncRNAs have emerged as promising biomarkers and therapeutic targets in cancer diagnosis and treatment. Several studies have investigated the anti-cancer properties of lncRNAs; however, only a few lncRNAs have been found to exhibit tumor suppressor properties. Furthermore, their length and poor stability make them difficult to synthesize. Thus, to overcome the instability of lncRNAs, poor specificity, and their off-target effects, researchers have constructed nanocarriers that encapsulate lncRNAs. Recently, translational medicine research has focused on delivering lncRNAs into tumor cells, including cancer cells, through nano-drug delivery systems in vivo. The developed nanocarriers can protect, target, and release lncRNAs under controlled conditions without appreciable adverse effects. To deliver lncRNAs to cancer cells, various nanocarriers, such as exosomes, microbubbles, polymer nanoparticles, 1,2-dioleyl-3-trimethylammoniumpropane chloride nanocarriers, and virus-like particles, have been successfully developed. Despite this, every nanocarrier has its own advantages and disadvantages when it comes to delivering nucleic acids effectively and safely. This article examines the current status of nanocarriers for lncRNA delivery in cancer therapy, focusing on their potential to enhance cancer treatment.


Asunto(s)
Exosomas , Neoplasias , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Biomarcadores de Tumor/metabolismo , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica
18.
Pathol Res Pract ; 257: 155285, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653089

RESUMEN

Glioblastoma, a highly lethal form of brain cancer, is characterized by its aggressive growth and resistance to conventional treatments, often resulting in limited survival. The response to therapy is notably influenced by various patient-specific genetic factors, underscoring the disease's complexity. Despite the utilization of diverse treatment modalities such as surgery, radiation, and chemotherapy, many patients experience local relapse, emphasizing the critical need for improved therapeutic strategies to effectively target these formidable tumors. Recent years have witnessed a surge in interest in natural products derived from plants, particularly alkaloids, for their potential anticancer effects. Alkaloids have shown promise in cancer chemotherapy by selectively targeting crucial signaling pathways implicated in tumor progression and survival. Specifically, they modulate the NF-κB and MAPK pathways, resulting in reduced tumor growth and altered gene expression across various cancer types. Additionally, alkaloids exhibit the capacity to induce cell cycle arrest, further impeding tumor proliferation in several malignancies. This review aims to delineate recent advances in understanding the pathology of glioblastoma multiforme (GBM) and to explore the potential therapeutic implications of alkaloids in managing this deadly disease. By segregating discussions on GBM pathology from those on alkaloid-based therapies, we provide a structured overview of the current challenges in GBM treatment and the promising opportunities presented by alkaloid-based interventions. Furthermore, we briefly discuss potential future directions in GBM research and therapy beyond alkaloids, including emerging treatment modalities or areas of investigation that hold promise for improving patient outcomes. In conclusion, our efforts offer hope for enhanced outcomes and improved quality of life for GBM patients through alkaloid-based therapies. By integrating insights from pathology and therapeutic perspectives, we underscore the significance of a comprehensive approach in addressing this devastating disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Glioblastoma/terapia , Glioblastoma/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Alcaloides/uso terapéutico , Transducción de Señal/efectos de los fármacos , Animales
19.
Front Microbiol ; 14: 1214870, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547682

RESUMEN

Biochar is a carbonaceous by-product of lignocellulosic biomass developed by various thermochemical processes. Biochar can be transformed into "nano-biochar" by size reduction to nano-meters level. Nano-biochar presents remarkable physico-chemical behavior in comparison to macro-biochar including; higher stability, unique nanostructure, higher catalytic ability, larger specific surface area, higher porosity, improved surface functionality, and surface active sites. Nano-biochar efficiently regulates the transport and absorption of vital micro-and macro-nutrients, in addition to toxic contaminants (heavy metals, pesticides, antibiotics). However an extensive understanding of the recent nano-biochar studies is essential for large scale implementations, including development, physico-chemical properties and targeted use. Nano-biochar toxicity on different organisms and its in-direct effect on humans is an important issue of concern and needs to be extensively evaluated for large scale applications. This review provides a detailed insight on nanobiochar research for (1) development methodologies, (2) compositions and properties, (3) characterization methods, (4) potentiality as emerging sorbent, photocatalyst, enzyme carrier for environmental application, and (5) environmental concerns.

20.
ACS Omega ; 8(47): 44812-44819, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38046322

RESUMEN

This paper targets the nuclease activity of polymeric chemical compounds toward bacterial genomic DNA and also elucidates their probable drug-like properties against the enzymes bacterial gyrase complex and human topoisomerase. Poly-o-chloroaniline, poly-m-chloroaniline, and poly-o,m-chloroaniline were synthesized by a chemical oxidation method. The structure of the polymers was characterized by the powder X-ray diffraction pattern, which suggested the ordered structure of the polymer, where the parallel and perpendicular periodicities of the polymeric chain were arranged systematically. The molecular transition of polymers was determined by a UV-visible spectrum study. A polymeric arrangement of the molecule can be seen in scanning electron microscopy (SEM) images. Among the three polymers chosen for the biological study and molecular docking studies, poly-m-chloroaniline showed more affinity to bind against both the selected targets (HT IIIb TB and SAGS) in comparison to the ortho- and ortho-meta substituents of polyaniline. The biophysical interaction analysis is in line with molecular docking, which shows that poly-m-chloroaniline forms many different categories of interactions and binds very strongly with the selected targets. The synthesized and tested molecules have potential nuclease activity, which is well aligned with molecular docking studies against the bacterial gyrase complex and human topoisomerase.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA