Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Immunopharmacol Immunotoxicol ; 42(3): 255-263, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32249710

RESUMEN

Objectives: Several studies demonstrated the antioxidant and anti-inflammatory role of melatonin and celecoxib. This study is designed to explore the underlying mechanism of hepatoprotective effects of melatonin and celecoxib against ethanol-induced hepatotoxicity by morphological, and biochemical approaches.Materials and methods: Adult male rats were divided into five groups: saline, ethanol, melatonin, and celecoxib were administered for 11 consecutive days after ethanol injection. Biochemical analyses were performed for the determination of glutathione (GSH), glutathione S-transferase (GST), and inducible nitric oxide (iNOS). Immunohistochemistry was performed to determine the level of different inflammatory markers.Results: Histopathological results showed that ethanol-induced marked hepatic injury leads to cloudy swelling, hydropic degeneration, apoptosis, and focal necrosis in all hepatic zones. Biochemical analysis revealed significant increases in serum transaminases and alkaline phosphatase in the ethanol group. Oxidative stress associated with attenuated antioxidant enzymes was also spotted in the ethanol group, as ethanol down-regulated GSH, GST, and upregulated NO. Additionally, ethanol increased the activation and the expression of tumor necrotic factor (TNF-α), p-NFKB, and COX2. Finally, hepatic cellular apoptosis was clearly obvious in ethanol intoxicated animals using activated JNK staining.Conclusion: These results provided pieces of evidence that the hepatoprotective effect of melatonin and celecoxib is possibly mediated through the modulation of JNK and TNF-α signaling pathways with subsequent suppression of inflammatory and apoptotic processes.


Asunto(s)
Celecoxib/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Etanol/toxicidad , Melatonina/farmacología , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Biomarcadores/sangre , Celecoxib/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quimioterapia Combinada , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Función Hepática , Masculino , Melatonina/administración & dosificación , Sustancias Protectoras/administración & dosificación , Ratas , Ratas Sprague-Dawley
2.
Drug Dev Res ; 81(8): 1057-1072, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32780491

RESUMEN

Benzimidazole is an important pharmacophore for clinically active drugs against inflammation and treatment of pain, however, it is associated with gastrointestinal side effects. Here we synthesized benzimidazole based agents with significant analgesic/anti-inflammatory potential but with less gastrointestinal adverse effects. In this study, we synthesized novel, orally bioavailable 2-mercaptobenzimidazole amino acid conjugates (4a-4o) and screened them for analgesic, anti-inflammatory and gastro-protective effects. The synthesized 2-mercaptbenzimidazole derivatives were characterized for their structure using FTIR, 1 H NMR and 13 C NMR spectroscopic techniques. The 2-mercaptobenzimidazole amino acid conjugates have found to possess potent analgesic, anti-inflammatory and gastroprotective activities, particularly with compound 4j and 4k. Most of the compounds exhibited remarkable anti-ulcer and antisecretory effects. Molecular docking studies were carried out to study the binding affinities and interactions of the synthesized compounds with target proteins COX-2 (PDB ID: 3LN1) and H+ /K+ -ATPase (PDB ID: 5Y0B). Our results support the clinical promise of these newly synthesized 2-mercaptobezimidazol conjugates as a component of therapeutic strategies for inflammation and analgesia, for which the gastric side effects are always a major limitation.

3.
Molecules ; 25(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486047

RESUMEN

Ginkgo biloba extract possess several promising biological activities; currently, it is clinically employed in the management of several diseases. This research work aimed to extrapolate the antioxidant and anti-inflammatory effects of Ginkgo biloba (Gb) in methotrexate (MTX)-induced liver toxicity model. These effects were analyzed using different in vivo experimental approaches and by bioinformatics analysis. Male SD rats were grouped as follows: saline; MTX; Gb (pretreated for seven days with 60, 120, and 180 mg/kg daily dose before MTX treatment); silymarin (followed by MTX treatment); Gb 180 mg/kg daily only; and silymarin only. Histopathological results revealed that MTX induced marked hepatic injury, associated with a substantial surge in various hepatic enzymes such as alanine transaminase (ALT), aspartate transaminase (AST), and serum alkaline phosphatase (ALP). Furthermore, MTX caused the triggering of oxidative distress associated with a depressed antioxidant system. All these injury markers contributed to a significant release of apoptotic (caspase-3 and c-Jun N-terminal kinases (JNK)) and tumor necrosis factor (TNF-α)-like inflammatory mediators. Treatment with Gb counteracts MTX-mediated apoptosis and inflammation dose-dependently along with modulating the innate antioxidative mechanisms such as glutathione (GSH) and glutathione S-transferase (GST). These results were further supplemented by in silico study to analyze drug-receptor interactions (for several Gb constituents and target proteins) stabilized by a low energy value and with a good number of hydrogen bonds. These findings demonstrated that Gb could ameliorate MTX-induced elevated liver reactive oxygen species (ROS) and inflammation, possibly by JNK and TNF-α modulation.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Hígado/efectos de los fármacos , Metotrexato/toxicidad , Extractos Vegetales/farmacología , Animales , Apoptosis , Biomarcadores/metabolismo , Caspasa 3/metabolismo , Biología Computacional , Relación Dosis-Respuesta a Droga , Ácidos Grasos/química , Ginkgo biloba , Enlace de Hidrógeno , Inmunohistoquímica , Inflamación , Hígado/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Masculino , Estrés Oxidativo , Oxígeno/metabolismo , Sustancias Protectoras/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Drug Des Devel Ther ; 15: 369-384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33574656

RESUMEN

BACKGROUND: Peripheral inflammation leads to the development of persistent thermal hyperalgesia and mechanical allodynia associated with increased expression of interleukin-1ß (IL-1ß) in the spinal cord. The aim of the present study was to investigate the effects of thiazolidine derivatives, 1b ([2-(2-hydroxyphenyl)-1,3-thiazolidin-4-yl](morpholin-4-yl)methanone) and 1d (2-hydroxy-4-{[2-(2-hydroxyphenyl)-1,3-thiazolidine-4-carbonyl]amino}benzoic acid), on thermal hyperalgesia, mechanical allodynia and on IL-1ß expression during carrageenan-induced inflammation in the spinal cord in mice. Inflammatory pain was induced by injecting 1% carrageenan into the right hind paw of the mice. METHODS: The animals were administered thiazolidine derivatives, 1b and 1d (1 mg/kg, 3 mg/kg, or 10 mg/kg), intraperitoneally 30 minutes before carrageenan administration. The animals' behavior was evaluated by measuring thermal hyperalgesia, mechanical allodynia, and motor coordination. The IL-1ß expression was measured by enzyme-linked immunosorbent assay. Acute and sub-acute toxicity studies were conducted to evaluate the toxicity profile of compounds. RESULTS: Treatment with the thiazolidine derivative, 1b and 1d, attenuated carrageenan-induced thermal hyperalgesia and mechanical allodynia at doses of 1 mg/kg, 3 mg/kg, and 10 mg/kg. No motor coordination deficits were observed in animals. The compounds also reduced IL-1ß expression in the spinal cord of mice. Acute and sub-acute toxicity studies revealed that both compounds were safe. CONCLUSION: The compounds exhibit promising activity against inflammatory pain due to their ability to produce anti-hyperalgesic and anti-allodynic effects and to inhibit IL-1ß expression in the spinal cord.


Asunto(s)
Hiperalgesia/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Dolor/tratamiento farmacológico , Tiazolidinas/uso terapéutico , Animales , Carragenina/administración & dosificación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Dolor/inducido químicamente , Dolor/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA