RESUMEN
BACKGROUND: As COVID-19-related mortality remains a concern, optimal management of patients hospitalized for COVID-19 continues to evolve. We developed a population model based on real-world evidence to quantify the clinical impact of increased utilization of remdesivir, the effectiveness of which has been well established in hospitalized patients with COVID-19. METHODS: The PINC AI healthcare database records for patients hospitalized for COVID-19 from January to December 2023 were stratified by those treated with or without remdesivir ("RDV" and "No RDV") and by supplemental oxygen requirements: no supplemental oxygen charges (NSOc), low-flow oxygen (LFO), and high-flow oxygen/non-invasive ventilation (HFO/NIV). Key vulnerable subgroups such as elderly and immunocompromised patients were also evaluated. The model applied previously published hazard ratios (HRs) to 28-day in-hospital mortality incidence to determine the number of potential lives saved if additional "No RDV" patients had been treated with remdesivir upon hospital admission. RESULTS: Of 84,810 hospitalizations for COVID-19 in 2023, 13,233 "No RDV" patients were similar in terms of characteristics and clinical presentation to the "RDV" patients. The model predicted that initiation of remdesivir in these patients could have saved 231 lives. Projected nationally, this translates to >800 potential lives saved (95% CI: 469-1,126). Eighty-nine percent of potential lives saved were elderly and 19% were immunocompromised individuals. Seventy-one percent were among NSOc or LFO patients. CONCLUSIONS: This public health model underscores the value of initiating remdesivir upon admission in patients hospitalized for COVID-19, in accordance with evidence-based best practices, to minimize lives lost due to SARS-CoV-2 infection.
RESUMEN
BACKGROUND: The role of molnupiravir for coronavirus disease 2019 (COVID-19) treatment is unclear. METHODS: We conducted a systematic review until 1 November 2022 searching for randomized controlled trials (RCTs) involving COVID-19 patients comparing molnupiravir [±standard of care (SoC)] versus SoC and/or placebo. Data were pooled in random-effects meta-analyses. Certainty of evidence was assessed according to the Grading of Recommendations, Assessment, Development and Evaluations approach. RESULTS: Nine RCTs were identified, eight investigated outpatients (29â254 participants) and one inpatients (304 participants). Compared with placebo/SoC, molnupiravir does not reduce mortality [risk ratio (RR) 0.27, 95% CI 0.07-1.02, high-certainty evidence] and probably does not reduce the risk for 'hospitalization or death' (RR 0.81, 95% CI 0.55-1.20, moderate-certainty evidence) by Day 28 in COVID-19 outpatients. We are uncertain whether molnupiravir increases symptom resolution by Day 14 (RR 1.20, 95% CI 1.02-1.41, very-low-certainty evidence) but it may make no difference by Day 28 (RR 1.05, 95% CI 0.92-1.19, low-certainty evidence). In inpatients, molnupiravir may increase mortality by Day 28 compared with placebo (RR 3.78, 95% CI 0.50-28.82, low-certainty evidence). There is little to no difference in serious adverse and adverse events during the study period in COVID-19 inpatients/outpatients treated with molnupiravir compared with placebo/SoC (moderate- to high-certainty evidence). CONCLUSIONS: In a predominantly immunized population of COVID-19 outpatients, molnupiravir has no effect on mortality, probably none on 'hospitalization or death' and effects on symptom resolution are uncertain. Molnupiravir was safe during the study period in outpatients although a potential increase in inpatient mortality requires careful monitoring in ongoing clinical research. Our analysis does not support routine use of molnupiravir for COVID-19 treatment in immunocompetent individuals.
Asunto(s)
COVID-19 , Humanos , SARS-CoV-2RESUMEN
OBJECTIVES: Our objective was to assess immune responses and their influencing factors in people living with HIV after messenger RNA (mRNA)-based COVID-19 booster vaccination (third dose). METHODS: This was a retrospective cohort study of people living with HIV who received booster vaccination with BNT-162b2 or mRNA-1273 between October 2021 and January 2022. We assessed anti-spike receptor-binding domain (RBD) immunoglobulin G (IgG), virus neutralizing activity (VNA) titres reported as 100% inhibitory dilution (ID100 ), and T-cell response (using interferon-gamma-release-assay [IGRA]) at baseline and quarterly follow-up visits. Patients with reported COVID-19 during follow-up were excluded. Predictors of serological immune response were analyzed using multivariate regression models. RESULTS: Of 84 people living with HIV who received an mRNA-based booster vaccination, 76 were eligible for analysis. Participants were on effective antiretroviral therapy (ART) and had a median of 670 CD4+ cells/µL (interquartile range [IQR] 540-850). Following booster vaccination, median anti-spike RBD IgG increased by 705.2 binding antibody units per millilitre (BAU/mL) and median VNA titres increased by 1000 ID100 at the follow-up assessment (median 13 weeks later). Multivariate regression revealed that time since second vaccination was a predictor of stronger serological responses (p < 0.0001). No association was found for other factors, including CD4+ status, choice of mRNA vaccine, or concomitant influenza vaccination. In total, 45 patients (59%) had a reactive baseline IGRA, of whom two lost reactivity during follow-up. Of 31 patients (41%) with non-reactive baseline IGRA, 17 (55%) converted to reactive and seven (23%) remained unchanged following booster vaccination. CONCLUSIONS: People living with HIV with ≥500 CD4+ cells/µL showed favourable immune responses to mRNA-based COVID-19 booster vaccination. A longer time (up to 29 weeks) since second vaccination was associated with higher serological responses, whereas choice of mRNA vaccine or concomitant influenza vaccination had no impact.
Asunto(s)
COVID-19 , Infecciones por VIH , Gripe Humana , Humanos , Estudios Retrospectivos , COVID-19/prevención & control , Vacunación , ARN Mensajero , Inmunidad , Inmunoglobulina G , Anticuerpos AntiviralesRESUMEN
PURPOSE: This executive summary of a national living guideline aims to provide rapid evidence based recommendations on the role of drug interventions in the treatment of hospitalized patients with COVID-19. METHODS: The guideline makes use of a systematic assessment and decision process using an evidence to decision framework (GRADE) as recommended standard WHO (2021). Recommendations are consented by an interdisciplinary panel. Evidence analysis and interpretation is supported by the CEOsys project providing extensive literature searches and living (meta-) analyses. For this executive summary, selected key recommendations on drug therapy are presented including the quality of the evidence and rationale for the level of recommendation. RESULTS: The guideline contains 11 key recommendations for COVID-19 drug therapy, eight of which are based on systematic review and/or meta-analysis, while three recommendations represent consensus expert opinion. Based on current evidence, the panel makes strong recommendations for corticosteroids (WHO scale 5-9) and prophylactic anticoagulation (all hospitalized patients with COVID-19) as standard of care. Intensified anticoagulation may be considered for patients with additional risk factors for venous thromboembolisms (VTE) and a low bleeding risk. The IL-6 antagonist tocilizumab may be added in case of high supplemental oxygen requirement and progressive disease (WHO scale 5-6). Treatment with nMABs may be considered for selected inpatients with an early SARS-CoV-2 infection that are not hospitalized for COVID-19. Convalescent plasma, azithromycin, ivermectin or vitamin D3 should not be used in COVID-19 routine care. CONCLUSION: For COVID-19 drug therapy, there are several options that are sufficiently supported by evidence. The living guidance will be updated as new evidence emerges.
Asunto(s)
COVID-19 , COVID-19/terapia , Hospitalización , Humanos , Inmunización Pasiva , Guías de Práctica Clínica como Asunto , SARS-CoV-2 , Sueroterapia para COVID-19RESUMEN
BACKGROUND: Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as potential prophylaxis to prevent coronavirus disease 2019 (COVID-19). OBJECTIVES: To assess the effects of SARS-CoV-2-neutralising mAbs, including mAb fragments, to prevent infection with SARS-CoV-2 causing COVID-19; and to maintain the currency of the evidence, using a living systematic review approach. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register, MEDLINE, Embase, and three other databases on 27 April 2022. We checked references, searched citations, and contacted study authors to identify additional studies. SELECTION CRITERIA: We included randomised controlled trials (RCTs) that evaluated SARS-CoV-2-neutralising mAbs, including mAb fragments, alone or combined, versus an active comparator, placebo, or no intervention, for pre-exposure prophylaxis (PrEP) and postexposure prophylaxis (PEP) of COVID-19. We excluded studies of SARS-CoV-2-neutralising mAbs to treat COVID-19, as these are part of another review. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed search results, extracted data, and assessed risk of bias using Cochrane RoB 2. Prioritised outcomes were infection with SARS-CoV-2, development of clinical COVID-19 symptoms, all-cause mortality, admission to hospital, quality of life, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS: We included four RCTs of 9749 participants who were previously uninfected and unvaccinated at baseline. Median age was 42 to 76 years. Around 20% to 77.5% of participants in the PrEP studies and 35% to 100% in the PEP studies had at least one risk factor for severe COVID-19. At baseline, 72.8% to 82.2% were SARS-CoV-2 antibody seronegative. We identified four ongoing studies, and two studies awaiting classification. Pre-exposure prophylaxis Tixagevimab/cilgavimab versus placebo One study evaluated tixagevimab/cilgavimab versus placebo in participants exposed to SARS-CoV-2 wild-type, Alpha, Beta, and Delta variant. About 39.3% of participants were censored for efficacy due to unblinding and 13.8% due to vaccination. Within six months, tixagevimab/cilgavimab probably decreases infection with SARS-CoV-2 (risk ratio (RR) 0.45, 95% confidence interval (CI) 0.29 to 0.70; 4685 participants; moderate-certainty evidence), decreases development of clinical COVID-19 symptoms (RR 0.18, 95% CI 0.09 to 0.35; 5172 participants; high-certainty evidence), and may decrease admission to hospital (RR 0.03, 95% CI 0 to 0.59; 5197 participants; low-certainty evidence). Tixagevimab/cilgavimab may result in little to no difference on mortality within six months, all-grade AEs, and SAEs (low-certainty evidence). Quality of life was not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and Delta variant. About 36.5% of participants opted for SARS-CoV-2 vaccination and had a mean of 66.1 days between last dose of intervention and vaccination. Within six months, casirivimab/imdevimab may decrease infection with SARS-CoV-2 (RR 0.01, 95% CI 0 to 0.14; 825 seronegative participants; low-certainty evidence) and may decrease development of clinical COVID-19 symptoms (RR 0.02, 95% CI 0 to 0.27; 969 participants; low-certainty evidence). We are uncertain whether casirivimab/imdevimab affects mortality regardless of the SARS-CoV-2 antibody serostatus. Casirivimab/imdevimab may increase all-grade AEs slightly (RR 1.14, 95% CI 0.98 to 1.31; 969 participants; low-certainty evidence). The evidence is very uncertain about the effects on grade 3 to 4 AEs and SAEs within six months. Admission to hospital and quality of life were not reported. Postexposure prophylaxis Bamlanivimab versus placebo One study evaluated bamlanivimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type. Bamlanivimab probably decreases infection with SARS-CoV-2 versus placebo by day 29 (RR 0.76, 95% CI 0.59 to 0.98; 966 participants; moderate-certainty evidence), may result in little to no difference on all-cause mortality by day 60 (R 0.83, 95% CI 0.25 to 2.70; 966 participants; low-certainty evidence), may increase all-grade AEs by week eight (RR 1.12, 95% CI 0.86 to 1.46; 966 participants; low-certainty evidence), and may increase slightly SAEs (RR 1.46, 95% CI 0.73 to 2.91; 966 participants; low-certainty evidence). Development of clinical COVID-19 symptoms, admission to hospital within 30 days, and quality of life were not reported. Casirivimab/imdevimab versus placebo One study evaluated casirivimab/imdevimab versus placebo in participants who may have been exposed to SARS-CoV-2 wild-type, Alpha, and potentially, but less likely to Delta variant. Within 30 days, casirivimab/imdevimab decreases infection with SARS-CoV-2 (RR 0.34, 95% CI 0.23 to 0.48; 1505 participants; high-certainty evidence), development of clinical COVID-19 symptoms (broad-term definition) (RR 0.19, 95% CI 0.10 to 0.35; 1505 participants; high-certainty evidence), may result in little to no difference on mortality (RR 3.00, 95% CI 0.12 to 73.43; 1505 participants; low-certainty evidence), and may result in little to no difference in admission to hospital. Casirivimab/imdevimab may slightly decrease grade 3 to 4 AEs (RR 0.50, 95% CI 0.24 to 1.02; 2617 participants; low-certainty evidence), decreases all-grade AEs (RR 0.70, 95% CI 0.61 to 0.80; 2617 participants; high-certainty evidence), and may result in little to no difference on SAEs in participants regardless of SARS-CoV-2 antibody serostatus. Quality of life was not reported. AUTHORS' CONCLUSIONS: For PrEP, there is a decrease in development of clinical COVID-19 symptoms (high certainty), infection with SARS-CoV-2 (moderate certainty), and admission to hospital (low certainty) with tixagevimab/cilgavimab. There is low certainty of a decrease in infection with SARS-CoV-2, and development of clinical COVID-19 symptoms; and a higher rate for all-grade AEs with casirivimab/imdevimab. For PEP, there is moderate certainty of a decrease in infection with SARS-CoV-2 and low certainty for a higher rate for all-grade AEs with bamlanivimab. There is high certainty of a decrease in infection with SARS-CoV-2, development of clinical COVID-19 symptoms, and a higher rate for all-grade AEs with casirivimab/imdevimab. Although there is high-to-moderate certainty evidence for some outcomes, it is insufficient to draw meaningful conclusions. These findings only apply to people unvaccinated against COVID-19. They are only applicable to the variants prevailing during the study and not other variants (e.g. Omicron). In vitro, tixagevimab/cilgavimab is effective against Omicron, but there are no clinical data. Bamlanivimab and casirivimab/imdevimab are ineffective against Omicron in vitro. Further studies are needed and publication of four ongoing studies may resolve the uncertainties.
Asunto(s)
Antineoplásicos Inmunológicos , COVID-19 , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , COVID-19/prevención & control , Humanos , Persona de Mediana Edad , SARS-CoV-2RESUMEN
BackgroundAdequate identification and testing of people at risk for HIV is fundamental for the HIV care continuum. A key strategy to improve timely testing is HIV indicator condition (IC) guided testing.AimTo evaluate the uptake of HIV testing recommendations in HIV IC-specific guidelines in European countries.MethodsBetween 2019 and 2021, European HIV experts reviewed guideline databases to identify all national guidelines of 62 HIV ICs. The proportion of HIV IC guidelines recommending HIV testing was reported, stratified by subgroup (HIV IC, country, eastern/western Europe, achievement of 90-90-90 goals and medical specialty).ResultsOf 30 invited European countries, 15 participated. A total of 791 HIV IC guidelines were identified: median 47 (IQR: 38-68) per country. Association with HIV was reported in 69% (545/791) of the guidelines, and 46% (366/791) recommended HIV testing, while 42% (101/242) of the AIDS-defining conditions recommended HIV testing. HIV testing recommendations were observed more frequently in guidelines in eastern (53%) than western (42%) European countries and in countries yet to achieve the 90-90-90 goals (52%) compared to those that had (38%). The medical specialties internal medicine, neurology/neurosurgery, ophthalmology, pulmonology and gynaecology/obstetrics had an HIV testing recommendation uptake below the 46% average. None of the 62 HIV ICs, countries or medical specialties had 100% accurate testing recommendation coverage in all their available HIV IC guidelines.ConclusionFewer than half the HIV IC guidelines recommended HIV testing. This signals an insufficient adoption of this recommendation in non-HIV specialty guidelines across Europe.
Asunto(s)
Infecciones por VIH , Medicina , Femenino , Embarazo , Humanos , Infecciones por VIH/diagnóstico , Infecciones por VIH/epidemiología , Europa (Continente)/epidemiología , Europa Oriental , Prueba de VIHRESUMEN
Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/farmacología , Infecciones por Coronavirus/tratamiento farmacológico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Neumonía Viral/tratamiento farmacológico , Síndrome Respiratorio Agudo Grave/tratamiento farmacológico , Adenosina Monofosfato/farmacocinética , Adenosina Monofosfato/farmacología , Alanina/farmacocinética , Alanina/farmacología , Antivirales/farmacocinética , Betacoronavirus/efectos de los fármacos , Betacoronavirus/crecimiento & desarrollo , Betacoronavirus/patogenicidad , COVID-19 , Ensayos Clínicos como Asunto , Ensayos de Uso Compasivo/métodos , Infecciones por Coronavirus/mortalidad , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Esquema de Medicación , Ebolavirus/efectos de los fármacos , Ebolavirus/crecimiento & desarrollo , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/mortalidad , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Coronavirus del Síndrome Respiratorio de Oriente Medio/crecimiento & desarrollo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Pandemias , Seguridad del Paciente , Neumonía Viral/mortalidad , Neumonía Viral/patología , Neumonía Viral/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/mortalidad , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/virología , Análisis de Supervivencia , Resultado del TratamientoRESUMEN
Antiviral drugs inhibit viral replication by interaction with specific elements of the viral replication cycle. Directly acting antiviral agents have revolutionized the therapeutic options for chronic infections with human immunodeficiency virus (HIV), hepatitis B virus (HBV) and hepatitis C virus (HCV). Pharmacological developments constantly improve therapeutic and prophylactic options for diseases caused by herpes viruses, which is of particular relevance for immunocompromised patients. While infections with persistent viruses, such as HIV, HBV or herpes viruses principally so far cannot be cured, complete elimination of viruses that cause acute infections is possible; however, acute infections, such as influenza or coronavirus disease 2019 (COVID-19) offer only a small therapeutic window for antiviral strategies due to their pathophysiological dynamics. The optimal time point for antiviral agents is immediately after exposure to the virus, which frequently limits its application in practice. An effective pre-exposure or postexposure prophylaxis has been established for infections with HIV and influenza A/B and also gains relevance for infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Asunto(s)
COVID-19 , Antivirales/uso terapéutico , Hepacivirus , Humanos , Infección Persistente , SARS-CoV-2RESUMEN
BACKGROUND: With 1.5 million deaths worldwide in 2018, tuberculosis (TB) remains a major global public health problem. While pulmonary TB (PTB) is the most common manifestation, the proportion of extrapulmonary TB (EPTB) is increasing in low-burden countries. EPTB is a heterogeneous disease entity posing diagnostic and management challenges due to the lack of reliable biomarkers. In this study, we prospectively evaluated clinical data and treatment response which were correlated with different biomarkers. METHODS: The study was conducted at the University Hospital of Cologne. 20 patients with EPTB were enrolled. We analyzed plasma interferon-γ-inducible protein 10 (IP-10) levels in plasma by ELISA for up to 12 months of treatment. In addition, the QuantiFERON®-TB Gold Plus (QFT® Plus) test was performed during the course of treatment. Clinical data were assessed prospectively and correlated with QFT® Plus and IP-10 levels. RESULTS: Plasma IP-10 levels were found to be significantly increased (p < 0.001) in patients with extensive disease compared to patients with limited disease (cervical lymph node TB) or healthy controls. In patients with clinically confirmed paradoxical reaction (PR), a further increase of IP-10 was noted. IFN-γ measured by the QFT® Plus test did not decrease significantly during the course of treatment. Of note, in four EPTB patients (20%) without radiographic pulmonary involvement, sputum culture was positive for Mycobacterium tuberculosis. CONCLUSION: Our data demonstrate that IP-10 may be a valuable biomarker for estimation of disease severity in EPTB and monitoring of the disease course in extensive forms. However, IP-10 may be less suitable for diagnosis and monitoring of EPTB patients with limited disease. The QFT® Plus test does not appear to be a suitable marker for therapy monitoring. Sputum should be examined in EPTB patients even in case of normal diagnostic imaging of the chest.
Asunto(s)
Quimiocina CXCL10/sangre , Tuberculosis Ganglionar , Humanos , Ensayos de Liberación de Interferón gamma , Mycobacterium tuberculosis , Índice de Severidad de la Enfermedad , Tuberculosis Ganglionar/diagnósticoRESUMEN
The coronavirus disease (COVID-19) pandemic has caused tremendous pressure on hospital infrastructures such as emergency rooms (ER) and outpatient departments. To avoid malfunctioning of critical services because of large numbers of potentially infected patients seeking consultation, we established a COVID-19 rapid response infrastructure (CRRI), which instantly restored ER functionality. The CRRI was also used for testing of hospital personnel, provided epidemiological data and was a highly effective response to increasing numbers of suspected COVID-19 cases.
Asunto(s)
Defensa Civil/organización & administración , Infecciones por Coronavirus/epidemiología , Coronavirus , Brotes de Enfermedades , Manejo de Atención al Paciente , Neumonía Viral/epidemiología , Adulto , Betacoronavirus , COVID-19 , Alemania/epidemiología , Humanos , Persona de Mediana Edad , Pandemias , Medición de Riesgo , SARS-CoV-2 , Centros de Atención Terciaria , TriajeAsunto(s)
Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Antivirales/sangre , COVID-19/sangre , Fallo Renal Crónico/sangre , Diálisis Renal/tendencias , Adenosina Monofosfato/administración & dosificación , Adenosina Monofosfato/sangre , Adenosina Monofosfato/farmacocinética , Anciano , Alanina/administración & dosificación , Alanina/sangre , Alanina/farmacocinética , Antivirales/administración & dosificación , Antivirales/farmacocinética , COVID-19/complicaciones , Humanos , Infusiones Intravenosas/métodos , Fallo Renal Crónico/complicaciones , Fallo Renal Crónico/tratamiento farmacológico , Masculino , Tratamiento Farmacológico de COVID-19Asunto(s)
Antibacterianos/farmacología , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/efectos de los fármacos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Células Hep G2 , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Micobacterias no Tuberculosas/efectos de los fármacosRESUMEN
The human gut microbiome is an important reservoir of antimicrobial resistance genes (ARGs), collectively termed the 'resistome'. To date, few studies have examined the dynamics of the human gut resistome in healthy individuals. Previously, the authors observed high rates of ARG acquisition and significant abundance shifts during international travel. In order to provide insight into commonly occurring dynamics, this study investigated longitudinal fluctuations in prevalent ARGs (cfxA, tetM and ermB) in the resistomes of non-travelling healthy volunteers. In addition, this study assessed the prevalence of acquirable ARGs (blaCTX-M, qnrB, qnrS, vanA and vanB) over time. Faecal samples from 23 participants were collected at baseline and after 2 and 4 weeks. DNA was isolated, and ARG quantification was performed by quantitative polymerase chain reaction adjusting for the total amount of bacterial 16S rDNA. vanA and qnrS were not detected in any of the samples, while the prevalence rates of vanB of non-enterococcal origin and qnrB were 73.9% and 5.7%, respectively. The ß-lactamase encoding blaCTX-M was detected in 17.4% of healthy participants. The results were compared with previous data from 122 travellers. ARG acquisitions observed in travellers were rare in non-travelling individuals during 4 weeks of follow-up, supporting the hypothesis of ARG acquisition during international travel. However, median -1.04- to 1.04-fold abundance changes were observed for 100% of cfxA, tetM and ermB, which did not differ from those found in travellers. Thus, common abundance shifts in prevalent ARGs of the gut resistome were found to occur independent of travel behaviour.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Microbioma Gastrointestinal , Humanos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , Genes Bacterianos/genéticaRESUMEN
BACKGROUND: One of the purposes of outpatient treatment for COVID-19 patients is to prevent severe disease courses and hospitalization. There is a need for evidence-based recommendations to be applied in primary care and specialized outpatient settings. METHODS: This guideline was developed on the basis of publications that were retrieved by a systematic search for randomized controlled trials in the Cochrane COVID-19 trial registry. The quality of evidence was assessed with GRADE, and structured consensus generation was carried out with MAGICapp. RESULTS: Unvaccinated COVID-19 outpatients with at least one risk factor for a severe disease course may be treated in the early phase of the disease with sotrovimab, remdesivir, or nirmatrelvir/ritonavir. Molnupiravir may also be used for such patients if no other clinically appropriate treatment options are available. Immunosuppressed persons with COVID-19 who are at high risk, and whose response to vaccination is expected to be reduced, ought to be treated with sotrovimab. It should be noted, however, that the clinical efficacy of sotrovimab against infections with the omicron subtype BA.2 is uncertain at the currently used dose, as the drug has displayed reduced activity against this subtype in vitro. COVID-19 patients at risk of a severe course may be offered budesonide inhalation, according to an off-label recommendation of the German College of General Practitioners and Family Physicians (other medical societies do not recommend either for or against this treatment). Thrombo - embolism prophylaxis with low-molecular-weight heparin may be given to elderly patients or those with a pre-existing illness. No recommendation is made concerning fluvoxamine or colchicine. Acetylsalicylic acid, azithromycin, ivermectin, systemic steroids, and vitamin D should not be used for the outpatient treatment of COVID-19. CONCLUSION: Drug treatment is now available for outpatients with COVID-19 in the early phase. Nearly all of the relevant trials have been conducted in unvaccinated subjects; this needs to be kept in mind in patient selection.
Asunto(s)
Atención Ambulatoria , Tratamiento Farmacológico de COVID-19 , Guías de Práctica Clínica como Asunto , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Humanos , Ensayos Clínicos Controlados Aleatorios como Asunto , Revisiones Sistemáticas como Asunto , Resultado del TratamientoRESUMEN
This network meta-analysis (NMA) assessed the efficacy of remdesivir in hospitalized patients with COVID-19 requiring supplemental oxygen. Randomized controlled trials of hospitalized patients with COVID-19, where patients were receiving supplemental oxygen at baseline and at least one arm received treatment with remdesivir, were identified. Outcomes included mortality, recovery, and no longer requiring supplemental oxygen. NMAs were performed for low-flow oxygen (LFO2); high-flow oxygen (HFO2), including NIV (non-invasive ventilation); or oxygen at any flow (AnyO2) at early (day 14/15) and late (day 28/29) time points. Six studies were included (N = 5245 patients) in the NMA. Remdesivir lowered early and late mortality among AnyO2 patients (risk ratio (RR) 0.52, 95% credible interval (CrI) 0.34-0.79; RR 0.81, 95%CrI 0.69-0.95) and LFO2 patients (RR 0.21, 95%CrI 0.09-0.46; RR 0.24, 95%CrI 0.11-0.48); no improvement was observed among HFO2 patients. Improved early and late recovery was observed among LFO2 patients (RR 1.22, 95%CrI 1.09-1.38; RR 1.17, 95%CrI 1.09-1.28). Remdesivir also lowered the requirement for oxygen support among all patient subgroups. Among hospitalized patients with COVID-19 requiring supplemental oxygen at baseline, use of remdesivir compared to best supportive care is likely to improve the risk of mortality, recovery and need for oxygen support in AnyO2 and LFO2 patients.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/uso terapéutico , Humanos , Oxígeno/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del TratamientoRESUMEN
Durable cell-mediated immune responses require efficient innate immune signaling and the release of pro-inflammatory cytokines. How precisely mRNA vaccines trigger innate immune cells for shaping antigen specific adaptive immunity remains unknown. Here, we show that SARS-CoV-2 mRNA vaccination primes human monocyte-derived macrophages for activation of the NLRP3 inflammasome. Spike protein exposed macrophages undergo NLRP3-driven pyroptotic cell death and subsequently secrete mature interleukin-1ß. These effects depend on activation of spleen tyrosine kinase (SYK) coupled to C-type lectin receptors. Using autologous cocultures, we show that SYK and NLRP3 orchestrate macrophage-driven activation of effector memory T cells. Furthermore, vaccination-induced macrophage priming can be enhanced with repetitive antigen exposure providing a rationale for prime-boost concepts to augment innate immune signaling in SARS-CoV-2 vaccination. Collectively, these findings identify SYK as a regulatory node capable of differentiating between primed and unprimed macrophages, which modulate spike protein-specific T cell responses.
Asunto(s)
COVID-19 , Proteína con Dominio Pirina 3 de la Familia NLR , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Innata , Inflamasomas/metabolismo , Interleucina-1beta , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Quinasas/metabolismo , ARN Mensajero/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Quinasa Syk , VacunaciónRESUMEN
BACKGROUND: The administration of broadly neutralising anti-HIV-1 antibodies before latency reversal could facilitate elimination of HIV-1-infected CD4 T cells. We tested this concept by combining the broadly neutralising antibody 3BNC117 in combination with the latency-reversing agent romidepsin in people with HIV-1 who were taking suppressive antiretroviral therapy (ART). METHODS: We did a randomised, open-label, phase 2A trial at three university hospital centres in Denmark, Germany, and the USA. Eligible participants were virologically suppressed adults aged 18-65 years who were infected with HIV-1 and on ART for at least 18 months, with plasma HIV-1 RNA concentrations of less than 50 copies per mL for at least 12 months, and a CD4 T-cell count of greater than 500 cells per µL. Participants were randomly assigned (1:1) to receive 3BNC117 plus romidepsin or romidepsin alone in two cycles. All participants received intravenous infusions of romidepsin (5 mg/m2 given over 120 min) at weeks 0, 1, and 2 (treatment cycle 1) and weeks 8, 9, and 10 (treatment cycle 2). Those in the 3BNC117 plus romidepsin group received an intravenous infusion of 3BNC117 (30 mg/kg given over 60 min) 2 days before each treatment cycle. An analytic treatment interruption (ATI) of ART was done at week 24 in both groups. Our primary endpoint was time to viral rebound during analytic treatment interruption, which was assessed in all participants who completed both treatment cycles and ATI. We used a log-rank test to compare time to viral rebound during analytic treatment interruption between the two groups. This trial is registered with ClinicalTrials.gov, NCT02850016. It is closed to new participants, and all follow-up is complete. FINDINGS: Between March 20, 2017, and Aug 14, 2018, 22 people were enrolled and randomly assigned, 11 to the 3BNC117 plus romidepsin group and 11 to the romidepsin group. 19 participants completed both treatment cycles and the ATI: 11 in the 3BNC117 plus romidepsin group and 8 in the romidepsin group. The median time to viral rebound during ATI was 18 days (IQR 14-28) in the 3BNC117 plus romidepsin group and 28 days (21-35) in the romidepsin group B (p=0·0016). Although this difference was significant, prolongation of time to viral rebound was not clinically meaningful in either group. All participants in both groups reported adverse events, but overall the combination of 3BNC117 and romidepsin was safe. Two severe adverse events were observed in the romidepsin group during 48 weeks of follow-up, one of which-increased direct bilirubin-was judged to be related to treatment. INTERPRETATION: The combination of 3BNC117 and romidepsin was safe but did not delay viral rebound during analytic treatment interruptions in individuals on long-term ART. The results of our trial could serve as a benchmark for further optimisation of HIV-1 curative strategies among people with HIV-1 who are taking suppressive ART. FUNDING: amfAR, German Center for Infection Research.
Asunto(s)
Depsipéptidos , Infecciones por VIH , Seropositividad para VIH , VIH-1 , Adulto , Depsipéptidos/uso terapéutico , Anticuerpos Anti-VIH , Infecciones por VIH/tratamiento farmacológico , Humanos , Carga ViralRESUMEN
BACKGROUND: The mortality of COVID-19 patients who are admitted to a hospital because of the disease remains high. The implementation of evidence-based treatments can improve the quality of care. METHODS: The new clinical practice guideline is based on publications retrieved by a systematic search in the Medline databases via PubMed and in the Cochrane COVID-19 trial registry, followed by a structured consensus process leading to the adoption of graded recommendations. RESULTS: Therapeutic anticoagulation can be considered in patients who do not require intensive care and have an elevated risk of thromboembolism (for example, those with D-dimer levels ≥ 2 mg/L). For patients in intensive care, therapeutic anticoagulation has no benefit. For patients with hypoxemic respiratory insufficiency, prone positioning and an early therapy attempt with CPAP/noninvasive ventilation (CPAP, continuous positive airway pressure) or high-flow oxygen therapy is recommended. Patients with IgG-seronegativity and, at most, low-flow oxygen should be treated with SARS-CoV-2-specific monoclonal antibodies (at present, casirivimab and imdevimab). Patients needing no more than low-flow oxygen should additionally be treated with janus kinase (JAK) inhibitors. All patients who need oxygen (low-flow, high-flow, noninvasive ventilation/CPAP, invasive ventilation) should be given systemic corticosteroids. Tocilizumab should be given to patients with a high oxygen requirement and progressively severe COVID-19 disease, but not in combination with JAK inhibitors. CONCLUSION: Noninvasive ventilation, high-flow oxygen therapy, prone positioning, and invasive ventilation are important elements of the treatment of hypoxemic patients with COVID-19. A reduction of mortality has been demonstrated for the administration of monoclonal antibodies, JAK inhibitors, corticosteroids, tocilizumab, and therapeutic anticoagulation to specific groups of patients.