Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 24(7)2023 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-37047613

RESUMEN

Curcumin shows anti-inflammatory activity, and it has been widely investigated for neurodegenerative diseases, adjuvant treatment in AIDS and antitumor activity against different tumors, among other activities. The goal of this work was to evaluate the capacity of curcumin and its derivatives (bisdemethoxycurcumin and bisdemethylcurcumin) in preventing the irritant effects of topically applied xylol and to assess the intrinsic capacity of curcuminoids in permeating human skin by ex vivo permeation tests. Its secondary goal was to validate an HPLC method to simultaneously determine the curcuminoids in the samples from the ex vivo permeation studies and drug extraction from the skin. Curcuminoid quantification was performed using an RP-C18 column, at isocratic conditions of elution and a detection wavelength of 265 nm. The method was specific with a suitable peak resolution, as well as linear, precise, and accurate in the range of 0.195-3.125 µg/mL for the three curcuminoids. Bisdemethylcurcumin showed the greatest permeation through the human skin, and it was the curcuminoid that was most retained within the human skin. The anti-inflammatory activity of the curcuminoids was evaluated in vivo using a xylol-induced inflammation model in rats. Histological studies were performed to observe any changes in morphology at the microscopic level, and these three curcuminoids were found to be respectful within the skin structure. These results show that these three curcuminoids are suitable for anti-inflammatory formulations for dermal applications, and they can be properly quantified using HPLC-UV.


Asunto(s)
Curcumina , Humanos , Ratas , Animales , Curcumina/farmacología , Curcumina/química , Cromatografía Líquida de Alta Presión/métodos , Curcuma/química , Diarilheptanoides , Antiinflamatorios/farmacología
2.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570874

RESUMEN

Essential oils are a complex mixture of aromatic substances whose pharmacological actions, including antimicrobial, antioxidant, anticancer, and anti-inflammatory activities, have been widely reported. This study aimed to evaluate the anti-Candida and dermal anti-inflammatory activity of essential oils from native and cultivated Ecuadorian plants. Essential oils from Bursera graveolens, Dacryodes peruviana, Mespilodaphne quixos, and Melaleuca armillaris were isolated by hydrodistillation and were characterized physically and chemically. Its tolerance was analyzed by in vitro and in vivo studies. The antifungal activity was studied against Candida albicans, Candida glabrata, and Candida parapsilosis, whereas the anti-inflammatory effect was evaluated by a mouse ear edema model. The main compounds were limonene, α-phellandrene, (E)-methyl cinnamate, and 1,8-cineole, respectively. All essential oils showed high tolerability for skin application, antifungal activity against the three Candida strains, and anti-inflammatory efficacy by decreasing edema and overexpression of pro-inflammatory cytokines. Dacryodes peruviana essential oil showed the highest antifungal activity. On the other hand, Dacryodes peruviana and Melaleuca armillaris showed the greatest anti-inflammatory potential, decreasing edema by 53.3% and 65.25%, respectively, and inhibiting the overexpression of TNF-α, IL-8, IL-17A, and IL-23. The results suggest that these essential oils could be used as alternative therapies in the treatment of both cutaneous candidiasis and dermal inflammation.


Asunto(s)
Candidiasis , Aceites Volátiles , Ratones , Animales , Aceites Volátiles/química , Antifúngicos/química , Aceites de Plantas/química , Ecuador , Candida , Candida albicans , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Antiinflamatorios/farmacología , Pruebas de Sensibilidad Microbiana
3.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36142878

RESUMEN

Scabies and hair lice are parasitic diseases that affect human skin and hair, respectively. The incidence and resistances of these infections are increasing. Tenutex® (disulfiram and benzyl benzoate emulsion) is an alternative to standard insecticides to avoid resistances. The aim of the work is to evaluate the transdermal absorption and the in vitro efficacy against scabies and hair lice after different exposition times. Dermatomed human skin was used to assess the dermal absorption using a validated High Performance Liquid Chromatography (HPLC) method. HEK001 keratinocytes were used to evaluate the cytotoxicity of benzyl benzoate. Only benzyl benzoate was able to cross the skin, but it did not show cytotoxicity at any of the tested concentrations. The product efficacy was tested on Psoroptes ovis after direct contact and after administration on sheep skin explants at different contact times. Permethrin/malathion-resistant strains of Pediculus humanis capitis adults and eggs were directly exposed to Tenutex, and the vitality and hatchability, respectively, were evaluated. The anti-scabies study demonstrated that exposure for 6 or 24 h completely eradicated the parasite. The pediculicidal activity of Tenutex exhibited superior efficacy than standard treatment on resistant lice. The positive results obtained suggest that Tenutex® is a good treatment option, especially in drug resistance situations.


Asunto(s)
Productos Biológicos , Insecticidas , Infestaciones por Piojos , Pediculus , Escabiosis , Adulto , Animales , Benzoatos , Productos Biológicos/uso terapéutico , Disulfiram/uso terapéutico , Emulsiones/uso terapéutico , Humanos , Insecticidas/farmacología , Infestaciones por Piojos/tratamiento farmacológico , Malatión , Permetrina/farmacología , Escabiosis/tratamiento farmacológico , Ovinos
4.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34681818

RESUMEN

Due to different oral and dental conditions, oral mucosa lesions such as those caused by the human papilloma virus and temporomandibular joint pathologies often have to be treated by surgical, ablative or extractive procedures. The treatment and control of pain and inflammation during these procedures is essential to guarantee the patient's well-being. For the foregoing reason, a hydrogel based on sodium alginate and hyaluronic acid containing 2% of ketorolac tromethamine has been developed. We characterized it physically, mechanically and morphologically. The rheological results suggest that the formulation can be easily and gently applied. Ex vivo permeation studies show that Ketorolac Tromethamine is able to penetrate through the buccal and sublingual mucosae, in addition to being retained in the mucosae's structure. Through an in vitro test, we were able to evaluate the role that saliva plays in the bioavailability of the drug, observing that more than half of the applied dose is eliminated in an hour. The histological and cytotoxic studies performed on pigs in vivo showed the excellent safety profile of the formulation, as well as its high tolerability. In parallel, a biomimetic artificial membrane (PermeaPad®) was evaluated, and it showed a high degree of correlation with the oral and sublingual mucosa.


Asunto(s)
Alginatos/farmacología , Vías de Eliminación de Fármacos , Ácido Hialurónico/farmacología , Ketorolaco Trometamina/farmacología , Boca/virología , Dolor/tratamiento farmacológico , Papillomaviridae , Administración Oral , Alginatos/química , Animales , Antiinflamatorios no Esteroideos/farmacología , Disponibilidad Biológica , Composición de Medicamentos , Femenino , Humanos , Ácido Hialurónico/química , Hidrogeles/farmacología , Ketorolaco Trometamina/química , Mucosa Bucal/virología , Infecciones por Papillomavirus/terapia , Porcinos
5.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34445584

RESUMEN

There are a large number of remedies in traditional medicine focused on relieving pain and inflammation. Flavanones have been a potential source in the search for leading compounds and biologically active components, and they have been the focus of much research and development in recent years. Eysenhardtia platycarpa is used in traditional medicine for the treatment of kidney diseases, bladder infections, and diabetes mellitus. Many compounds have been isolated from this plant, such as flavones, flavanones, phenolic compounds, triterpenoid acids, chalcones, sugars, and fatty acids, among others. In this paper, natural flavanone 1 (extracted from Eysenhardtia platycarpa) as lead compound and flavanones 1a-1d as its structural analogues were screened for anti-inflammatory activity using Molinspiration® and PASS Online in a computational study. The hydro alcoholic solutions (FS) of flavanones 1, 1a-1d (FS1, FS1a-FS1d) were also assayed to investigate their in vivo anti-inflammatory cutaneous effect using two experimental models, a rat ear edema induced by arachidonic acid (AA) and a mouse ear edema induced by 12-O-tetradecanoylphorbol acetate (TPA). Histological studies and analysis of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6 were also assessed in AA-inflamed rat ear tissue. The results showed that the flavanone hydro alcoholic solutions (FS) caused edema inhibition in both evaluated models. This study suggests that the evaluated flavanones will be effective when used in the future in skin pathologies with inflammation, with the results showing 1b and 1d to be the best.


Asunto(s)
Antiinflamatorios/farmacología , Enfermedades del Oído/tratamiento farmacológico , Edema/tratamiento farmacológico , Fabaceae/química , Flavanonas/farmacología , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Animales , Enfermedades del Oído/patología , Edema/patología , Ensayos Analíticos de Alto Rendimiento , Inflamación/patología , Ratones , Ratas , Ratas Wistar
6.
Pharm Res ; 34(8): 1728-1740, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28540502

RESUMEN

PURPOSE: In order to obtain dermal vehicles of ketorolac tromethamine (KT) for the local treatment of inflammation and restrict undesirable side effects of systemic levels hydrogels (HGs) of poloxamer and carbomer were developed. METHODS: KT poloxamer based HG (KT-P407-HG) and KT carbomer based HG (KT-C940-HG) were elaborated and characterized in terms of swelling, degradation, porosity, rheology, stability, in vitro release, ex vivo permeation and distribution skin layers. Finally, in vivo anti-inflammatory efficacy and skin tolerance were also assessed. RESULTS: HGs were transparent and kept stable after 3 months exhibiting biocompatible near neutral pH values. Rheological patterns fitted to Herschel-Bulkley for KT-C940-HG and Newton for KT-P407-HG due to its low viscosity at 25°C. Rapid release profiles were observed through first order kinetics. Following the surface the highest concentration of KT from C940-HG was found in the epidermis and the stratum corneum for P407-HG. Relevant anti-inflammatory efficacy of KT-P407-HG revealed enough ability to provide sufficient bioavailability KT to reach easily the site of action. The application of developed formulations in volunteers did not induce any visual skin irritation. CONCLUSIONS: KT-P407-HG was proposed as suitable formulation for anti-inflammatory local treatment without theoretical systemic side effect.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Ketorolaco Trometamina/farmacología , Poloxámero/química , Administración Cutánea , Adulto , Animales , Antiinflamatorios no Esteroideos/química , Disponibilidad Biológica , Excipientes , Femenino , Humanos , Hidrogeles , Concentración de Iones de Hidrógeno , Ketorolaco Trometamina/química , Ratones , Persona de Mediana Edad , Modelos Biológicos , Permeabilidad , Porosidad , Absorción Cutánea , Distribución Tisular , Viscosidad , Adulto Joven
7.
Int J Mol Sci ; 18(11)2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29160818

RESUMEN

Halobetasol propionate (HB) is a potent synthetic corticosteroid used against inflammatory skin diseases, such as dermatitis, eczema, and psoriasis, among others. The aim of this study is to define how the presence of different skin penetration enhancers (nonane, menthone, limonene, azone, carene, decanol, linoleic acid and cetiol) affects the penetration and retention in skin of HB. To determine drug penetration through skin, 5% of each promoter was used in an ex vivo system with human skin on Franz cells. The results showed that the highest permeation occurs in the presence of menthone, followed by nonane. Permeation parameters were determined. The in vivo test was assessed, and the formulation containing HB-menthone presented better anti-inflammatory efficacy. These results are useful to generate a specific treatment according to each patient's needs, and the inflammatory characteristics of the disease.


Asunto(s)
Clobetasol/análogos & derivados , Absorción Cutánea/efectos de los fármacos , Administración Cutánea , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Cromatografía Líquida de Alta Presión , Clobetasol/administración & dosificación , Clobetasol/farmacocinética , Clobetasol/farmacología , Humanos , Permeabilidad/efectos de los fármacos , Reproducibilidad de los Resultados
8.
Molecules ; 22(9)2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28914822

RESUMEN

The search for new alternatives for the prevention and treatment of cancer is extremely important to minimize human mortality. Natural products are an alternative to chemical drugs, since they are a source of many potential compounds with anticancer properties. In the present study, the (2S)-5,7-dihydroxy-6-prenylflavanone (semi-systematic name), also called (2S)-5,7-dihydroxy-6-(3-methyl-2-buten-1-yl)-2-phenyl-2,3-dihydro-4H-1-Benzopyran-4-one (CAS Name registered) (1) was isolated from Eysenhardtia platycarpa leaves. This flavanone 1 was considered as the lead compound to generate new cytotoxic derivatives 1a, 1b, 1c and 1d. These compounds 1, 1a, 1b, 1c, and 1d were then loaded in nanosized drug delivery systems such as polymeric nanoparticles (NPs). Small homogeneous spherical shaped NPs were obtained. Cytotoxic activity of free compounds 1, 1a, 1b, 1c, and 1d and encapsulated in polymeric NPs (NPs1, NPs1a, NPs1b, NPs1c and NPs1d) were evaluated against the pancreatic cancer cell line MiaPaCa-2. The obtained results demonstrated that NPs1a and NPs1b exhibited optimal cytotoxicity, and an even higher improvement of the cytotoxic efficacy was exhibited with the encapsulation of 1a. Based on these results, NPs1a were proposed as promising anticancer agent candidates.


Asunto(s)
Portadores de Fármacos/química , Fabaceae/química , Flavanonas/química , Nanopartículas/química , Extractos Vegetales/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Flavanonas/aislamiento & purificación , Flavanonas/farmacología , Humanos , Cinética , Neoplasias Pancreáticas , Tamaño de la Partícula , Extractos Vegetales/aislamiento & purificación , Hojas de la Planta/química , Propiedades de Superficie , Termodinámica
9.
Pharm Dev Technol ; 21(6): 755-62, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26155877

RESUMEN

CONTEXT: Elaboration of oral liquid formulations is the best alternative when no marketed forms are available for pediatrics. OBJECTIVE: The development, characterization and stability evaluation of methadone (MI, MII, MIII) and phenobarbital (PI, PII) can be used for the treatment of neonatal abstinence syndrome (NAS). MATERIAL AND METHODS: A standard operating procedure was established and parameters such as appearance, pH, rheological behavior and drug content were evaluated at three temperatures for 90 days. RESULTS AND DISCUSSION: Changes in color of phenobarbital made necessary the storage below 25 °C. pH did not change in methadone solutions and was able to maintain phenobarbital solubilized. Degradation data at 4 °C fitted to Plateau equation followed by one phase decay. MI was stable for 60 days at the three temperatures; MII for 90 days at 4 and 25 °C and 60 days at 40 °C; MIII for 60 days at 4 °C, 15 days at 25 °C and 7 days at 4 °C. PI was stable for 60 days at 4 °C and 30 days at 25 °C. PII was stable for 7 days at 4 and 25 °C. All solutions met microbial specifications. CONCLUSION: A correct dosage for the treatment of NAS was guaranteed.


Asunto(s)
Química Farmacéutica/métodos , Diseño de Fármacos , Metadona/síntesis química , Síndrome de Abstinencia Neonatal , Fenobarbital/síntesis química , Administración Oral , Química Farmacéutica/normas , Embalaje de Medicamentos , Estabilidad de Medicamentos , Humanos , Recién Nacido , Metadona/administración & dosificación , Síndrome de Abstinencia Neonatal/tratamiento farmacológico , Fenobarbital/administración & dosificación , Reología/métodos , Reología/normas , Resultado del Tratamiento
10.
Artículo en Inglés | MEDLINE | ID: mdl-38662335

RESUMEN

Three-dimensional (3D) bioprinting is considered one of the most advanced tools to build up materials for tissue engineering. The aim of this work was the design, development and characterization of a bioink composed of human mesenchymal stromal cells (hMSC) for extrusion through nozzles to create these 3D structures that might potentially be apply to replace the function of damaged natural tissue. In this study, we focused on the advantages and the wide potential of biocompatible biomaterials, such as hyaluronic acid and alginate for the inclusion of hMSC. The bioink was characterized for its physical (pH, osmolality, degradation, swelling, porosity, surface electrical properties, conductivity, and surface structure), mechanical (rheology and printability) and biological (viability and proliferation) properties. The developed bioink showed high porosity and high swelling capacity, while the degradation rate was dependent on the temperature. The bioink also showed negative electrical surface and appropriate rheological properties required for bioprinting. Moreover, stress-stability studies did not show any sign of physical instability. The developed bioink provided an excellent environment for the promotion of the viability and growth of hMSC cells. Our work reports the first-time study of the effect of storage temperature on the cell viability of bioinks, besides showing that our bioink promoted a high cell viability after being extruded by the bioprinter. These results support the suggestion that the developed hMSC-composed bioink fulfills all the requirements for tissue engineering and can be proposed as a biological tool with potential applications in regenerative medicine and tissue engineering.

11.
Gels ; 10(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38920910

RESUMEN

Nanocomposite gels consist of nanoparticles dispersed in a gel matrix. The main aim of this work was to develop nanocomposite gels for topical delivery of Flurbiprofen (FB) for humans and farm animals. Nanocomposite gels were prepared stemming from nanoparticles (NPs) freeze-dried with two different cryoprotectants, D-(+)-trehalose (NPs-TRE) and polyethylene glycol 3350 (NPs-PEG), sterilized by gamma (γ) irradiation, and gelled with Sepigel® 305. Nanocomposite gels with FB-NPs-TRE and FB-NPs-PEG were physiochemically characterized in terms of appearance, pH, morphological studies, porosity, swelling, degradation, extensibility, and rheological behavior. The drug release profile and kinetics were assessed, as well as, the ex vivo permeation of FB was assessed in human, porcine and bovine skin. In vivo studies in healthy human volunteers were tested without FB to assess the tolerance of the gels with nanoparticles. Physicochemical studies demonstrated the suitability of the gel formulations. The ex vivo skin permeation capacity of FB-NPs nanocomposite gels with different cryoprotectants allowed us to conclude that these formulations are suitable topical delivery systems for human and veterinary medicine. However, there were statistically significant differences in the permeation of each formulation depending on the skin. Results suggested that FB-NPs-PEG nanocomposite gel was most suitable for human and porcine skin, and the FB-NPs-TRE nanocomposite gel was most suitable for bovine skin.

12.
Pharmaceutics ; 16(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794305

RESUMEN

Recently, the number of people acquiring tattoos has increased, with tattoos gaining significant popularity in people between 20 and 40 years old. Inflammation is a common reaction associated with tattooing. The purpose of this study was to evaluate a nanostructured lipid carrier loading pranoprofen (PRA-NLC) as a tattoo aftercare formulation to reduce the inflammation associated with tattooing. In this context, the in vitro drug release and the ex vivo permeation-through-human-skin tests using Franz cells were appraised. The tolerance of our formulation on the skin was evaluated by studying the skin's biomechanical properties. In addition, an in vivo anti-inflammatory study was conducted on mice skin to evaluate the efficacy of the formulation applied topically after tattooing the animals. PRA-NLC showed a sustained release up to 72 h, and the amount of pranoprofen retained in the skin was found to be 33.48 µg/g/cm2. The formulation proved to be well tolerated; it increased stratum corneum hydration, and no signs of skin irritation were observed. Furthermore, it was demonstrated to be non-cytotoxic since the cell viability was greater than 80%. Based on these results, we concluded that PRA-NLC represents a suitable drug delivery carrier for the transdermal delivery of pranoprofen to alleviate the local skin inflammation associated with tattooing.

13.
Int J Pharm ; 651: 123732, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142012

RESUMEN

Acne constitutes one of the most prevalent skin disorder affecting both skin and mental health of patients. However, no cure has been developed so far. In this area, Thymol constitutes a potential candidate since it is able to restore the healthy microbiota of the skin. However, its permeation properties cause its fast elimination and, to avoid this problem, thymol has been loaded into nanostructured lipid carriers (TH-NLCs). Moreover, to increase the suitability of these systems for skin applications, several surface functionalization strategies of TH-NLCs had been assessed. Among the different molecules, phosphatidylcholine-TH-NLCs demonstrated to be safe as well as to provide high antioxidant activity in cellular studies. Therefore, to administer these systems to the skin, functionalized TH-NLCs were dispersed into a carbomer gel developing semi-solid formulations. Rheological properties, porosity and extensibility of TH dispersed in carbomer as well as phosphatidylcholine-TH-NLCs were assessed demonstrating suitable properties for dermal applications. Moreover, both formulations were applied in healthy volunteers demonstrating that gel-phosphatidylcholine-TH-NLCs were able to increase in skin hydration, decrease water loss and reduce skin sebum. Therefore, gel-phosphatidylcholine-TH-NLCs proved to be a suitable system for skin pathologies linked with high sebum generation, loss of hydration and high oxidation, such as acne vulgaris.


Asunto(s)
Acné Vulgar , Nanopartículas , Nanoestructuras , Humanos , Timol , Portadores de Fármacos/uso terapéutico , Piel , Acné Vulgar/tratamiento farmacológico , Fosfatidilcolinas , Tamaño de la Partícula
14.
Int J Nanomedicine ; 19: 1225-1248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348173

RESUMEN

Purpose: Acne vulgaris is one of the most prevalent dermal disorders affecting skin health and appearance. To date, there is no effective cure for this pathology, and the majority of marketed formulations eliminate both healthy and pathological microbiota. Therefore, hereby we propose the encapsulation of an antimicrobial natural compound (thymol) loaded into lipid nanostructured systems to be topically used against acne. Methods: To address this issue, nanostructured lipid carriers (NLC) capable of encapsulating thymol, a natural compound used for the treatment of acne vulgaris, were developed either using ultrasonication probe or high-pressure homogenization and optimized using 22-star factorial design by analyzing the effect of NLC composition on their physicochemical parameters. These NLC were optimized using a design of experiments approach and were characterized using different physicochemical techniques. Moreover, short-term stability and cell viability using HaCat cells were assessed. Antimicrobial efficacy of the developed NLC was assessed in vitro and ex vivo. Results: NLC encapsulating thymol were developed and optimized and demonstrated a prolonged thymol release. The formulation was dispersed in gels and a screening of several gels was carried out by studying their rheological properties and their skin retention abilities. From them, carbomer demonstrated the capacity to be highly retained in skin tissues, specifically in the epidermis and dermis layers. Moreover, antimicrobial assays against healthy and pathological skin pathogens demonstrated the therapeutic efficacy of thymol-loaded NLC gelling systems since NLC are more efficient in slowly reducing C. acnes viability, but they possess lower antimicrobial activity against S. epidermidis, compared to free thymol. Conclusion: Thymol was successfully loaded into NLC and dispersed in gelling systems, demonstrating that it is a suitable candidate for topical administration against acne vulgaris by eradicating pathogenic bacteria while preserving the healthy skin microbiome.


Asunto(s)
Acné Vulgar , Antiinfecciosos , Nanoestructuras , Humanos , Timol/farmacología , Portadores de Fármacos/química , Lípidos/química , Nanoestructuras/química , Antiinfecciosos/farmacología , Geles/química , Tamaño de la Partícula
15.
Gels ; 10(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38391479

RESUMEN

Thyme oil (THO) possesses excellent antibacterial and antioxidant properties which are suitable for skin inflammatory disorders such as acne vulgaris. However, THO is insoluble in water and its components are highly volatile. Therefore, these drawbacks may be overcome by its encapsulation in biodegradable PLGA nanoparticles (THO-NPs) that had been functionalized using several strategies. Moreover, cell viability was studied in HaCat cells, confirming their safety. In order to assess therapeutic efficacy against acne, bacterial reduction capacity and antioxidant properties were assessed. Moreover, the anti-inflammatory and wound-healing abilities of THO-NPs were also confirmed. Additionally, ex vivo antioxidant assessment was carried out using pig skin, demonstrating the suitable antioxidant properties of THO-NPs. Moreover, THO and THO-NPs were dispersed in a gelling system, and stability, rheological properties, and extensibility were assessed. Finally, the biomechanical properties of THO-hydrogel and THO-NP-hydrogel were studied in human volunteers, confirming the suitable activity for the treatment of acne. As a conclusion, THO has been encapsulated into PLGA NPs, and in vitro, ex vivo, and in vivo assessments had been carried out, demonstrating excellent properties for the treatment of inflammatory skin disorders.

16.
Colloids Surf B Biointerfaces ; 234: 113678, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38194839

RESUMEN

Thymol-loaded PLGA nanoparticles (TH-NPs) were incorporated into different semi-solid formulations using variable gelling agents (carbomer, polysaccharide and poloxamer). The formulations were physicochemically characterized in terms of size, polydispersity index and zeta potential. Moreover, stability studies were performed by analyzing the backscattering profile showing that the gels were able to increase the nanoparticles stability at 4 °C. Moreover, rheological properties showed that all gels were able to increase the viscosity of TH-NPs with the carbomer gels showing the highest values. Moreover, the observation of carbomer dispersed TH-NPs under electron microscopical techniques showed 3D nanometric cross-linked filaments with the NPs found embedded in the threads. In addition, cytotoxicity studies showed that keratinocyte cells in contact with the formulations obtained cell viability values higher than 70 %. Furthermore, antimicrobial efficacy was assessed against C. acnes and S. epidermidis showing that the formulations eliminated the pathogenic C. acnes but preserved the resident S. epidermidis which contributes towards a healthy skin microbiota. Finally, biomechanical properties of TH-NPs dispersed in carbomer gels in contact with healthy human skin were studied showing that they did not alter skin properties and were able to reduce sebum which is increased in acne vulgaris. As a conclusion, TH-NPs dispersed in semi-solid formulations and, especially in carbomer gels, may constitute a suitable solution for the treatment of acne vulgaris.


Asunto(s)
Acné Vulgar , Nanopartículas , Humanos , Hidrogeles/química , Timol/farmacología , Piel , Acné Vulgar/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Nanopartículas/química
17.
Gels ; 9(6)2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37367119

RESUMEN

Pranoprofen (PRA)-loaded nanostructured lipid carriers (NLC) have been dispersed into blank gels composed of 1% of Carbomer 940 (PRA-NLC-Car) and 3% of Sepigel® 305 (PRA-NLC-Sep) as a novel strategy to refine the biopharmaceutical profile of PRA, for dermal administration in the treatment of skin inflammation that may be caused by possible skin abrasion. This stratagem intends to improve the joining of PRA with the skin, improving its retention and anti-inflammatory effect. Gels were evaluated for various parameters such as pH, morphology, rheology, and swelling. In vitro drug release research and ex vivo permeation through the skin were carried out on Franz diffusion cells. Additionally, in vivo assays were carried out to evaluate the anti-inflammatory effect, and tolerance studies were performed in humans by evaluating the biomechanical properties. Results showed a rheological profile common of semi-solid pharmaceutical forms for dermal application, with sustained release up to 24 h. In vivo studies using PRA-NLC-Car and PRA-NLC-Sep in Mus musculus mice and hairless rats histologically demonstrated their efficacy in an inflammatory animal model study. No signs of skin irritation or modifications of the skin's biophysical properties were identified and the gels were well tolerated. The results obtained from this investigation concluded that the developed semi-solid formulations represent a fitting drug delivery carrier for PRA's transdermal delivery, enhancing its dermal retention and suggesting that they can be utilized as an interesting and effective topical treatment for local skin inflammation caused by a possible abrasion.

18.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-37375841

RESUMEN

Atopic dermatitis (AD) is a chronic autoimmune inflammatory skin disorder which causes a significant clinical problem due to its prevalence. The ongoing treatment for AD is aimed at improving the patient's quality of life. Additionally, glucocorticoids or immunosuppressants are being used in systemic therapy. Baricitinib (BNB) is a reversible Janus-associated kinase (JAK)-inhibitor; JAK is an important kinase involved in different immune responses. We aimed at developing and evaluating new topical liposomal formulations loaded with BNB for the treatment of flare ups. Three liposomal formulations were elaborated using POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), CHOL (Cholesterol) and CER (Ceramide) in different proportions: (i) POPC, (ii) POPC:CHOL (8:2, mol/mol) and (iii) POPC:CHOL:CER (3.6:2.4:4.0 mol/mol/mol). They were physiochemically characterized over time. In addition, an in vitro release study, ex vivo permeation and retention studies in altered human skin (AHS) were also performed. Histological analysis was used to study the tolerance of the formulations on the skin. Lastly, the HET-CAM test was also performed to evaluate the irritancy capacity of the formulations, and the modified Draize test was performed to evaluate the erythema and edema capacity of the formulations on the altered skin. All liposomes showed good physicochemical properties and were stable for at least one month. POPC:CHOL:CER had the highest flux and permeation, and the retention in the skin was equal to that of POPC:CHOL. The formulations exhibited no harmful or irritating effects, and the histological examination revealed no changes in structure. The three liposomes have shown promising results for the aim of the study.

19.
Pharmaceutics ; 15(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376079

RESUMEN

The increasing number of skin cancer cases worldwide and the adverse side effects of current treatments have led to the search for new anticancer agents. In this present work, the anticancer potential of the natural flavanone 1, extracted from Eysenhardtia platycarpa, and four flavanone derivatives 1a-d obtained by different reactions from 1 was investigated by an in silico study and through cytotoxicity assays in melanoma (M21), cervical cancer (HeLa) cell lines and in a non-tumor cell line (HEK-293). The free compounds and compounds loaded in biopolymeric nanoparticles (PLGA NPs 1, 1a-d) were assayed. A structure-activity study (SAR) was performed to establish the main physicochemical characteristics that most contribute to cytotoxicity. Finally, ex vivo permeation studies were performed to assess the suitability of the flavanones for topical administration. Results revealed that most of the studied flavanones and their respective PLGA NPs inhibited cell growth depending on the concentration; 1b should be highlighted. The descriptors of the energetic factor were those that played a more important role in cellular activity. PLGA NPs demonstrated their ability to penetrate (Qp of 17.84-118.29 µg) and be retained (Qr of 0.01-1.44 g/gskin/cm2) in the skin and to exert their action for longer. The results of the study suggest that flavanones could offer many opportunities as a future anticancer topical adjuvant treatment.

20.
Gels ; 9(5)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37233006

RESUMEN

Sialolithiasis mainly affects the oral salivary glands due to the presence of small stones that obstruct the secretion of saliva. The treatment and control of pain and inflammation during the course of this pathology is essential to guarantee the patient's comfort. For this reason, a ketorolac calcium cross-linked alginate hydrogel was developed, and it was then applied in the area of the buccal cavity. The formulation was characterized (swelling and degradation profile, extrusion, extensibility, surface morphology, viscosity, and drug release). The drug release was studied ex vivo in static Franz cells and with a dynamic ex vivo method under artificial saliva continuous flow. The product exhibits adequate physicochemical properties considering the intended purpose, and the drug concentrations retained in the mucosa were high enough to deliver a therapeutic local concentration able to reduce the pain associated with the patient's conditions. The results confirmed the suitability of the formulation for application in the mouth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA