Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355792

RESUMEN

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C-Reactiva , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Red Nerviosa , Proteínas del Tejido Nervioso , Neuronas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C-Reactiva/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados
2.
EMBO J ; 42(17): e111719, 2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37431963

RESUMEN

Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas/metabolismo , ARN/genética
3.
PLoS Comput Biol ; 20(6): e1012174, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900718

RESUMEN

Computational biologists are frequently engaged in collaborative data analysis with wet lab researchers. These interdisciplinary projects, as necessary as they are to the scientific endeavor, can be surprisingly challenging due to cultural differences in operations and values. In this Ten Simple Rules guide, we aim to help dry lab researchers identify sources of friction and provide actionable tools to facilitate respectful, open, transparent, and rewarding collaborations.


Asunto(s)
Biología Computacional , Conducta Cooperativa , Investigadores , Humanos
4.
Nucleic Acids Res ; 49(1): 145-157, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290556

RESUMEN

Mammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences result from structural differences in the catalytic domains of the two de novo DNMTs and are not a consequence of differential recruitment to the genome. Molecular dynamics simulations suggest that, in case of human DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. By exchanging arginine to a lysine, the corresponding side chain in DNMT3B, the sequence preference is reversed, confirming the requirement for arginine at this position. This context-dependent enzymatic activity provides additional insights into the complex regulation of DNA methylation patterns.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Ratones/genética , Sustitución de Aminoácidos , Animales , Arginina/química , Secuencia de Bases , Cristalografía por Rayos X , Citosina/química , ADN Metiltransferasa 3A , Conjuntos de Datos como Asunto , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes , Guanina/química , Humanos , Lisina/química , Simulación de Dinámica Molecular , Especificidad por Sustrato , Sulfitos , Secuenciación Completa del Genoma , ADN Metiltransferasa 3B
5.
Genome Res ; 27(1): 118-132, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27999094

RESUMEN

Cancer cells exhibit multiple epigenetic changes with prominent local DNA hypermethylation and widespread hypomethylation affecting large chromosomal domains. Epigenome studies often disregard the study of repeat elements owing to technical complexity and their undefined role in genome regulation. We have developed NSUMA (Next-generation Sequencing of UnMethylated Alu), a cost-effective approach allowing the unambiguous interrogation of DNA methylation in more than 130,000 individual Alu elements, the most abundant retrotransposon in the human genome. DNA methylation profiles of Alu repeats have been analyzed in colon cancers and normal tissues using NSUMA and whole-genome bisulfite sequencing. Normal cells show a low proportion of unmethylated Alu (1%-4%) that may increase up to 10-fold in cancer cells. In normal cells, unmethylated Alu elements tend to locate in the vicinity of functionally rich regions and display epigenetic features consistent with a direct impact on genome regulation. In cancer cells, Alu repeats are more resistant to hypomethylation than other retroelements. Genome segmentation based on high/low rates of Alu hypomethylation allows the identification of genomic compartments with differential genetic, epigenetic, and transcriptomic features. Alu hypomethylated regions show low transcriptional activity, late DNA replication, and its extent is associated with higher chromosomal instability. Our analysis demonstrates that Alu retroelements contribute to define the epigenetic landscape of normal and cancer cells and provides a unique resource on the epigenetic dynamics of a principal, but largely unexplored, component of the primate genome.


Asunto(s)
Elementos Alu/genética , Neoplasias del Colon/genética , Epigénesis Genética , Genoma Humano/genética , Islas de CpG/genética , Metilación de ADN/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
6.
Bioinformatics ; 33(9): 1411-1413, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28453678

RESUMEN

Summary: Chainy is a cross-platform web tool providing systematic pipelines and steady criteria to process real-time PCR data, including the calculation of efficiencies from raw data by kinetic methods, evaluation of the suitability of multiple references, standardized normalization using one or more references, and group-wise relative quantification statistical testing. We illustrate the utility of Chainy for differential expression and chromatin immunoprecipitation enrichment (ChIP-QPCR) analysis. Availability and Implementation: Chainy is open source and freely available at http://maplab.cat/chainy. Contact: imallona@igtp.cat. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Programas Informáticos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Estándares de Referencia
7.
BMC Genomics ; 18(1): 242, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327106

RESUMEN

BACKGROUND: Genomic datasets accompanying scientific publications show a surprisingly high rate of gene name corruption. This error is generated when files and tables are imported into Microsoft Excel and certain gene symbols are automatically converted into dates. RESULTS: We have developed Truke, a fexible Web tool to detect, tag and fix, if possible, such misconversions. Aside, Truke is language and regional locale-aware, providing file format customization (decimal symbol, field sepator, etc.) following user's preferences. CONCLUSIONS: Truke is a data format conversion tool with a unique corrupted gene symbol detection utility. Truke is freely available without registration at http://maplab.cat/truke .


Asunto(s)
Biología Computacional/métodos , Genómica/métodos , Programas Informáticos , Navegador Web
8.
Stem Cells ; 33(6): 2025-36, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25801824

RESUMEN

The progressive restriction of differentiation potential from pluripotent embryonic stem cells (ESCs) to tissue-specific stem cells involves widespread epigenetic reprogramming, including modulation of DNA methylation patterns. Skeletal muscle stem cells are required for the growth, maintenance, and regeneration of skeletal muscle. To investigate the contribution of DNA methylation to the establishment of the myogenic program, we analyzed ESCs, skeletal muscle stem cells in proliferating (myoblasts) and differentiating conditions (myotubes), and mature myofibers. About 1.000 differentially methylated regions were identified during muscle-lineage determination and terminal differentiation, mainly located in gene bodies and intergenic regions. As a whole, myogenic stem cells showed a gain of DNA methylation, while muscle differentiation was accompanied by loss of DNA methylation in CpG-poor regions. Notably, the hypomethylated regions in myogenic stem cells were neighbored by enhancer-type chromatin, suggesting the involvement of DNA methylation in the regulation of cell-type specific enhancers. Interestingly, we demonstrated the hypomethylation of the muscle cell-identity Myf5 super-enhancer only in muscle cells. Furthermore, we observed that upstream stimulatory factor 1 binding to Myf5 super-enhancer occurs upon DNA demethylation in myogenic stem cells. Taken altogether, we characterized the unique DNA methylation signature of skeletal muscle stem cells and highlighted the importance of DNA methylation-mediated regulation of cell identity Myf5 super-enhancer during cellular differentiation.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Metilación de ADN/genética , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citología , Regulación de la Expresión Génica/genética , Células Madre Embrionarias Humanas/metabolismo , Humanos , Proteínas Musculares/genética
9.
J Biomed Inform ; 60: 77-83, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26827622

RESUMEN

Alu elements are the most abundant retrotransposons in the human genome with more than one million copies. Alu repeats have been reported to participate in multiple processes related with genome regulation and compartmentalization. Moreover, they have been involved in the facilitation of pathological mutations in many diseases, including cancer. The contribution of Alus and other repeats in genomic regulation is often overlooked because their study poses technical and analytical challenges hardly attainable with conventional strategies. Here we propose the integration of ontology-based semantic methods to query a knowledgebase for the human Alus. The knowledgebase for the human Alus leverages Sequence (SO) and Gene Ontologies (GO) and is devoted to address functional and genetic information in the genomic context of the Alus. For each Alu element, the closest gene and transcript are stored, as well their functional annotation according to GO, the state of the chromatin and the transcription factors binding sites inside the Alu. The model uses Web Ontology Language (OWL) and Semantic Web Rule Language (SWRL). As a case of use and to illustrate the utility of the tool, we have evaluated the epigenetic states of Alu repeats associated with gene promoters according to their transcriptional activity. The ontology is easily extendable, offering a scaffold for the inclusion of new experimental data. The RDF/XML formalization is freely available at http://aluontology.sourceforge.net/.


Asunto(s)
Elementos Alu , Biología Computacional , Ontología de Genes , Bases del Conocimiento , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Genoma Humano , Humanos , Regiones Promotoras Genéticas
11.
Genome Biol ; 24(1): 119, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198712

RESUMEN

Computational methods represent the lifeblood of modern molecular biology. Benchmarking is important for all methods, but with a focus here on computational methods, benchmarking is critical to dissect important steps of analysis pipelines, formally assess performance across common situations as well as edge cases, and ultimately guide users on what tools to use. Benchmarking can also be important for community building and advancing methods in a principled way. We conducted a meta-analysis of recent single-cell benchmarks to summarize the scope, extensibility, and neutrality, as well as technical features and whether best practices in open data and reproducible research were followed. The results highlight that while benchmarks often make code available and are in principle reproducible, they remain difficult to extend, for example, as new methods and new ways to assess methods emerge. In addition, embracing containerization and workflow systems would enhance reusability of intermediate benchmarking results, thus also driving wider adoption.


Asunto(s)
Benchmarking , Biología Computacional , Biología Computacional/métodos , Flujo de Trabajo
12.
Plant Physiol ; 156(4): 1978-89, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21677095

RESUMEN

The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional levels.


Asunto(s)
Ácidos/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica de las Plantas , Opuntia/genética , Etiquetas de Secuencia Expresada , Regulación del Desarrollo de la Expresión Génica , Genes de Plantas/genética , Anotación de Secuencia Molecular , Opuntia/crecimiento & desarrollo , Filogenia , Estándares de Referencia , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Ácido Nucleico , Factores de Tiempo
13.
BMC Bioinformatics ; 12: 404, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22014212

RESUMEN

BACKGROUND: Relative calculation of differential gene expression in quantitative PCR reactions requires comparison between amplification experiments that include reference genes and genes under study. Ignoring the differences between their efficiencies may lead to miscalculation of gene expression even with the same starting amount of template. Although there are several tools performing PCR primer design, there is no tool available that predicts PCR efficiency for a given amplicon and primer pair. RESULTS: We have used a statistical approach based on 90 primer pair combinations amplifying templates from bacteria, yeast, plants and humans, ranging in size between 74 and 907 bp to identify the parameters that affect PCR efficiency. We developed a generalized additive model fitting the data and constructed an open source Web interface that allows the obtention of oligonucleotides optimized for PCR with predicted amplification efficiencies starting from a given sequence. CONCLUSIONS: pcrEfficiency provides an easy-to-use web interface allowing the prediction of PCR efficiencies prior to web lab experiments thus easing quantitative real-time PCR set-up. A web-based service as well the source code are provided freely at http://srvgen.upct.es/efficiency.html under the GPL v2 license.


Asunto(s)
Reacción en Cadena de la Polimerasa/métodos , Bacterias/genética , Cartilla de ADN/genética , Humanos , Internet , Modelos Estadísticos , Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Programas Informáticos
14.
Nat Neurosci ; 24(2): 225-233, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33349709

RESUMEN

Neural stem cells (NSCs) generate neurons throughout life in the mammalian hippocampus. However, the potential for long-term self-renewal of individual NSCs within the adult brain remains unclear. We used two-photon microscopy and followed NSCs that were genetically labeled through conditional recombination driven by the regulatory elements of the stem cell-expressed genes GLI family zinc finger 1 (Gli1) or achaete-scute homolog 1 (Ascl1). Through intravital imaging of NSCs and their progeny, we identify a population of Gli1-targeted NSCs showing long-term self-renewal in the adult hippocampus. In contrast, once activated, Ascl1-targeted NSCs undergo limited proliferative activity before they become exhausted. Using single-cell RNA sequencing, we show that Gli1- and Ascl1-targeted cells have highly similar yet distinct transcriptional profiles, supporting the existence of heterogeneous NSC populations with diverse behavioral properties. Thus, we here identify long-term self-renewing NSCs that contribute to the generation of new neurons in the adult hippocampus.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Células-Madre Neurales/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Femenino , Perfilación de la Expresión Génica , Hipocampo/citología , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/genética , Microscopía Intravital , Masculino , Metalotioneína 3 , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación Multifotónica , Regeneración Nerviosa , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Análisis de la Célula Individual , Proteína con Dedos de Zinc GLI1/biosíntesis , Proteína con Dedos de Zinc GLI1/genética
15.
BMC Plant Biol ; 10: 4, 2010 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20056000

RESUMEN

BACKGROUND: Identification of genes with invariant levels of gene expression is a prerequisite for validating transcriptomic changes accompanying development. Ideally expression of these genes should be independent of the morphogenetic process or environmental condition tested as well as the methods used for RNA purification and analysis. RESULTS: In an effort to identify endogenous genes meeting these criteria nine reference genes (RG) were tested in two Petunia lines (Mitchell and V30). Growth conditions differed in Mitchell and V30, and different methods were used for RNA isolation and analysis. Four different software tools were employed to analyze the data. We merged the four outputs by means of a non-weighted unsupervised rank aggregation method. The genes identified as optimal for transcriptomic analysis of Mitchell and V30 were EF1alpha in Mitchell and CYP in V30, whereas the least suitable gene was GAPDH in both lines. CONCLUSIONS: The least adequate gene turned out to be GAPDH indicating that it should be rejected as reference gene in Petunia. The absence of correspondence of the best-suited genes suggests that assessing reference gene stability is needed when performing normalization of data from transcriptomic analysis of flower and leaf development.


Asunto(s)
Flores/crecimiento & desarrollo , Petunia/genética , Hojas de la Planta/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Biología Computacional , Flores/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Petunia/crecimiento & desarrollo , Hojas de la Planta/genética , ARN de Planta/genética , Estándares de Referencia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Análisis de Secuencia de ADN , Programas Informáticos
16.
Epigenetics ; 15(6-7): 765-779, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32041475

RESUMEN

Alu repeats constitute a major fraction of human genome and for a small subset of them a role in gene regulation has been described. The number of studies focused on the functional characterization of particular Alu elements is very limited. Most Alu elements are DNA methylated and then assumed to lie in repressed chromatin domains. We hypothesize that Alu elements with low or variable DNA methylation are candidates for a functional role. In a genome-wide study in normal and cancer tissues, we pinpointed an Alu repeat (AluSq2) with differential methylation located upstream of the promoter region of the DIEXF gene. DIEXF encodes a highly conserved factor essential for the development of zebrafish digestive tract. To characterize the contribution of the Alu element to the regulation of DIEXF we analysed the epigenetic landscapes of the gene promoter and flanking regions in different cell types and cancers. Alternate epigenetic profiles (DNA methylation and histone modifications) of the AluSq2 element were associated with DIEXF transcript diversity as well as protein levels, while the epigenetic profile of the CpG island associated with the DIEXF promoter remained unchanged. These results suggest that AluSq2 might directly contribute to the regulation of DIEXF transcription and protein expression. Moreover, AluSq2 was DNA hypomethylated in different cancer types, pointing out its putative contribution to DIEXF alteration in cancer and its potential as tumoural biomarker.


Asunto(s)
Elementos Alu , Neoplasias Colorrectales/genética , Epigénesis Genética , Proteínas Nucleares/genética , Células Cultivadas , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Código de Histonas , Humanos , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo
17.
Cancer Cell ; 35(2): 315-328.e6, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30753828

RESUMEN

We addressed the precursor role of aging-like spontaneous promoter DNA hypermethylation in initiating tumorigenesis. Using mouse colon-derived organoids, we show that promoter hypermethylation spontaneously arises in cells mimicking the human aging-like phenotype. The silenced genes activate the Wnt pathway, causing a stem-like state and differentiation defects. These changes render aged organoids profoundly more sensitive than young ones to transformation by BrafV600E, producing the typical human proximal BRAFV600E-driven colon adenocarcinomas characterized by extensive, abnormal gene-promoter CpG-island methylation, or the methylator phenotype (CIMP). Conversely, CRISPR-mediated simultaneous inactivation of a panel of the silenced genes markedly sensitizes to BrafV600E-induced transformation. Our studies tightly link aging-like epigenetic abnormalities to intestinal cell fate changes and predisposition to oncogene-driven colon tumorigenesis.


Asunto(s)
Adenocarcinoma/genética , Envejecimiento/genética , Transformación Celular Neoplásica/genética , Neoplasias del Colon/genética , Metilación de ADN , Silenciador del Gen , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Células Madre/enzimología , Vía de Señalización Wnt/genética , Adenocarcinoma/enzimología , Adenocarcinoma/patología , Factores de Edad , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Neoplasias del Colon/enzimología , Neoplasias del Colon/patología , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Ratones Endogámicos NOD , Ratones Mutantes , Ratones SCID , Fenotipo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Células Madre/patología , Factores de Tiempo , Técnicas de Cultivo de Tejidos
18.
Methods Mol Biol ; 1766: 123-135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605850

RESUMEN

The Cancer Genome Atlas (TCGA) epigenome data includes the DNA methylation status of tumor and normal tissues of large cohorts for dozens of cancer types. Due to the moderately large data sizes, retrieving and analyzing them requires basic programming skills. Simple data browsing (e.g., candidate gene search) is hampered by the scarcity of easy-to-use data browsers addressed to the broad community of biomedical researchers. We propose a new visualization method depicting the overall DNA methylation status at each TCGA cohort while emphasizing its heterogeneity, thus facilitating the evaluation of the cohort variability and the normal versus tumor differences. Implemented as a trackhub integrated to the University of California Santa Cruz (UCSC) genome browser, it can be easily added to any genome-wide annotation layer.To exemplify the trackhub usage we evaluate local DNA methylation boundaries, the aberrant DNA methylation of a CpG island located at the estrogen receptor 1 (ESR1) in breast and colon cancer, and the hypermethylation of the Homeobox HOXA gene cluster and the EN1 gene in multiple cancer types. The DNA methylation pancancer trackhub is freely available at http://maplab.cat/tcga_450k_trackhub .


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Metilación de ADN , Epigénesis Genética , Genoma Humano/genética , Atlas como Asunto , Islas de CpG/genética , Visualización de Datos , Receptor alfa de Estrógeno/genética , Femenino , Estudios de Asociación Genética , Heterogeneidad Genética , Proteínas de Homeodominio/genética , Humanos , Familia de Multigenes
19.
Thyroid ; 28(5): 601-612, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29635968

RESUMEN

BACKGROUND: Papillary thyroid cancer (PTC) is the most common type of thyroid cancer. Unlike most cancers, its incidence has dramatically increased in the last decades mainly due to increased diagnosis of indolent PTCs. Adequate risk stratification is crucial to avoid the over-treatment of low-risk patients, as well as the under-treatment of high-risk patients, but the currently available markers are still insufficient. Kallikreins (KLKs) are emergent biomarkers in cancer, but their involvement in PTC is unknown. METHODS: This study analyzed DNA methylation (HumanMethylation arrays) and gene expression (RNA-Seq) of KLKs, BRAF and RAS mutations, and clinical data from four published thyroid cancer data sets including normal and tumor tissues (n = 73, n = 475, n = 20, and n = 82) as discovery, training, and validation series. The C4.5 classification algorithm was used to generate a decision tree. Disease-free survival was estimated using Kaplan-Meier and Cox approaches. Specific analyses were performed using real-time polymerase chain reaction and immunohistochemistry. RESULTS: The entire KLK family was deregulated in PTC, displaying a specific epigenetic and transcriptional profile strongly associated with BRAFV600E or RAS mutations. Thus, a decision-tree algorithm was developed based on three KLKs with >80% sensitivity and >95% specificity, identifying BRAF- and RAS-mutated tumors. Notably, tumors lacking these mutations were classified as BRAF- or RAS-like. Most importantly, the KLK algorithm uncovered a novel PTC subtype showing favorable prognostic features. CONCLUSIONS: The KLK algorithm could lead to a new clinically applicable strategy with important implications for the risk stratification of PTC and the management of patients.


Asunto(s)
Carcinoma Papilar/patología , Neoplasias de la Tiroides/patología , Adulto , Carcinoma Papilar/genética , Metilación de ADN , Análisis Mutacional de ADN , Femenino , Humanos , Calicreínas/genética , Masculino , Persona de Mediana Edad , Mutación , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias de la Tiroides/genética , Proteínas ras/genética
20.
Oncotarget ; 7(9): 10536-46, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26859682

RESUMEN

Hypomethylation of DNA is a hallmark of cancer and its analysis as tumor biomarker has been proposed, but its determination in clinical settings is hampered by lack of standardized methodologies. Here, we present QUAlu (Quantification of Unmethylated Alu), a new technique to estimate the Percentage of UnMethylated Alu (PUMA) as a surrogate for global hypomethylation. QUAlu consists in the measurement by qPCR of Alu repeats after digestion of genomic DNA with isoschizomers with differential sensitivity to DNA methylation. QUAlu performance has been evaluated for reproducibility, trueness and specificity, and validated by deep sequencing. As a proof of use, QUAlu has been applied to a broad variety of pathological examination specimens covering five cancer types. Major findings of the preliminary application of QUAlu to clinical samples include: (1) all normal tissues displayed similar PUMA; (2) tumors showed variable PUMA with the highest levels in lung and colon and the lowest in thyroid cancer; (3) stools from colon cancer patients presented higher PUMA than those from control individuals; (4) lung squamous cell carcinomas showed higher PUMA than lung adenocarcinomas, and an increasing hypomethylation trend associated with smoking habits. In conclusion, QUAlu is a simple and robust method to determine Alu hypomethylation in human biospecimens and may be easily implemented in research and clinical settings.


Asunto(s)
Adenocarcinoma/genética , Elementos Alu/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Neoplasias del Colon/genética , Metilación de ADN/genética , Neoplasias Pulmonares/genética , Técnicas de Diagnóstico Molecular/métodos , Neoplasias de la Tiroides/genética , Adenocarcinoma del Pulmón , Línea Celular Tumoral , Islas de CpG/genética , ADN/metabolismo , Células HCT116 , Humanos , Reacción en Cadena de la Polimerasa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA