Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 182(6): 1560-1573.e13, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32783916

RESUMEN

SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.


Asunto(s)
Metiltransferasas/química , ARN Helicasas/química , ARN Polimerasa Dependiente del ARN/química , Proteínas no Estructurales Virales/química , Replicación Viral , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Betacoronavirus/genética , Betacoronavirus/metabolismo , Betacoronavirus/ultraestructura , Sitios de Unión , ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , Holoenzimas/química , Holoenzimas/metabolismo , Magnesio/metabolismo , Metiltransferasas/metabolismo , Unión Proteica , ARN Helicasas/metabolismo , ARN Viral/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2 , Proteínas no Estructurales Virales/metabolismo
2.
Nat Rev Mol Cell Biol ; 23(1): 21-39, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34824452

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to cause massive global upheaval. Coronaviruses are positive-strand RNA viruses with an unusually large genome of ~30 kb. They express an RNA-dependent RNA polymerase and a cohort of other replication enzymes and supporting factors to transcribe and replicate their genomes. The proteins performing these essential processes are prime antiviral drug targets, but drug discovery is hindered by our incomplete understanding of coronavirus RNA synthesis and processing. In infected cells, the RNA-dependent RNA polymerase must coordinate with other viral and host factors to produce both viral mRNAs and new genomes. Recent research aiming to decipher and contextualize the structures, functions and interplay of the subunits of the SARS-CoV-2 replication and transcription complex proteins has burgeoned. In this Review, we discuss recent advancements in our understanding of the molecular basis and complexity of the coronavirus RNA-synthesizing machinery. Specifically, we outline the mechanisms and regulation of RNA translation, replication and transcription. We also discuss the composition of the replication and transcription complexes and their suitability as targets for antiviral therapy.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Transcripción Genética , Replicación Viral/fisiología , Animales , Humanos , ARN Viral/metabolismo , Transcripción Genética/efectos de los fármacos , Replicación Viral/efectos de los fármacos
3.
Nature ; 614(7949): 781-787, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725929

RESUMEN

The SARS-CoV-2 RNA-dependent RNA polymerase coordinates viral RNA synthesis as part of an assembly known as the replication-transcription complex (RTC)1. Accordingly, the RTC is a target for clinically approved antiviral nucleoside analogues, including remdesivir2. Faithful synthesis of viral RNAs by the RTC requires recognition of the correct nucleotide triphosphate (NTP) for incorporation into the nascent RNA. To be effective inhibitors, antiviral nucleoside analogues must compete with the natural NTPs for incorporation. How the SARS-CoV-2 RTC discriminates between the natural NTPs, and how antiviral nucleoside analogues compete, has not been discerned in detail. Here, we use cryogenic-electron microscopy to visualize the RTC bound to each of the natural NTPs in states poised for incorporation. Furthermore, we investigate the RTC with the active metabolite of remdesivir, remdesivir triphosphate (RDV-TP), highlighting the structural basis for the selective incorporation of RDV-TP over its natural counterpart adenosine triphosphate3,4. Our results explain the suite of interactions required for NTP recognition, informing the rational design of antivirals. Our analysis also yields insights into nucleotide recognition by the nsp12 NiRAN (nidovirus RdRp-associated nucleotidyltransferase), an enigmatic catalytic domain essential for viral propagation5. The NiRAN selectively binds guanosine triphosphate, strengthening proposals for the role of this domain in the formation of the 5' RNA cap6.


Asunto(s)
ARN Polimerasa Dependiente de ARN de Coronavirus , Microscopía por Crioelectrón , SARS-CoV-2 , Humanos , Antivirales/química , Antivirales/metabolismo , Antivirales/farmacología , ARN Polimerasa Dependiente de ARN de Coronavirus/química , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/ultraestructura , COVID-19/virología , Nucleósidos/metabolismo , Nucleósidos/farmacología , ARN Viral/biosíntesis , ARN Viral/química , ARN Viral/metabolismo , SARS-CoV-2/enzimología , Especificidad por Sustrato , Guanosina Trifosfato/metabolismo , Caperuzas de ARN
4.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38614133

RESUMEN

MOTIVATION: Neoantigen vaccines make use of tumor-specific mutations to enable the patient's immune system to recognize and eliminate cancer. Selecting vaccine elements, however, is a complex task which needs to take into account not only the underlying antigen presentation pathway but also tumor heterogeneity. RESULTS: Here, we present NeoAgDT, a two-step approach consisting of: (i) simulating individual cancer cells to create a digital twin of the patient's tumor cell population and (ii) optimizing the vaccine composition by integer linear programming based on this digital twin. NeoAgDT shows improved selection of experimentally validated neoantigens over ranking-based approaches in a study of seven patients. AVAILABILITY AND IMPLEMENTATION: The NeoAgDT code is published on Github: https://github.com/nec-research/neoagdt.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Neoplasias , Programas Informáticos , Humanos , Vacunas contra el Cáncer/inmunología , Neoplasias/inmunología , Antígenos de Neoplasias/inmunología , Mutación , Simulación por Computador , Biología Computacional/métodos , Algoritmos
5.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34599106

RESUMEN

The first step in gene expression in all organisms requires opening the DNA duplex to expose one strand for templated RNA synthesis. In Escherichia coli, promoter DNA sequence fundamentally determines how fast the RNA polymerase (RNAP) forms "open" complexes (RPo), whether RPo persists for seconds or hours, and how quickly RNAP transitions from initiation to elongation. These rates control promoter strength in vivo, but their structural origins remain largely unknown. Here, we use cryoelectron microscopy to determine the structures of RPo formed de novo at three promoters with widely differing lifetimes at 37 °C: λPR (t1/2 ∼10 h), T7A1 (t1/2 ∼4 min), and a point mutant in λPR (λPR-5C) (t1/2 ∼2 h). Two distinct RPo conformers are populated at λPR, likely representing productive and unproductive forms of RPo observed in solution studies. We find that changes in the sequence and length of DNA in the transcription bubble just upstream of the start site (+1) globally alter the network of DNA-RNAP interactions, base stacking, and strand order in the single-stranded DNA of the transcription bubble; these differences propagate beyond the bubble to upstream and downstream DNA. After expanding the transcription bubble by one base (T7A1), the nontemplate strand "scrunches" inside the active site cleft; the template strand bulges outside the cleft at the upstream edge of the bubble. The structures illustrate how limited sequence changes trigger global alterations in the transcription bubble that modulate the RPo lifetime and affect the subsequent steps of the transcription cycle.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/genética , Infecciones por Escherichia coli/genética , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , ADN Bacteriano/genética , Transcripción Genética/genética
6.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33883267

RESUMEN

Backtracking, the reverse motion of the transcriptase enzyme on the nucleic acid template, is a universal regulatory feature of transcription in cellular organisms but its role in viruses is not established. Here we present evidence that backtracking extends into the viral realm, where backtracking by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) may aid viral transcription and replication. Structures of SARS-CoV-2 RdRp bound to the essential nsp13 helicase and RNA suggested the helicase facilitates backtracking. We use cryo-electron microscopy, RNA-protein cross-linking, and unbiased molecular dynamics simulations to characterize SARS-CoV-2 RdRp backtracking. The results establish that the single-stranded 3' segment of the product RNA generated by backtracking extrudes through the RdRp nucleoside triphosphate (NTP) entry tunnel, that a mismatched nucleotide at the product RNA 3' end frays and enters the NTP entry tunnel to initiate backtracking, and that nsp13 stimulates RdRp backtracking. Backtracking may aid proofreading, a crucial process for SARS-CoV-2 resistance against antivirals.


Asunto(s)
COVID-19/virología , SARS-CoV-2/fisiología , Replicación Viral/genética , Adenosina Monofosfato/farmacología , Antivirales/farmacología , COVID-19/genética , COVID-19/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Microscopía por Crioelectrón/métodos , ADN Helicasas/metabolismo , Genoma Viral , Humanos , Simulación de Dinámica Molecular , ARN Helicasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , ARN Polimerasa Dependiente del ARN/fisiología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Proteínas no Estructurales Virales/genética
7.
Nat Methods ; 17(9): 897-900, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32778833

RESUMEN

We present an approach for preparing cryo-electron microscopy (cryo-EM) grids to study short-lived molecular states. Using piezoelectric dispensing, two independent streams of ~50-pl droplets of sample are deposited within 10 ms of each other onto the surface of a nanowire EM grid, and the mixing reaction stops when the grid is vitrified in liquid ethane ~100 ms later. We demonstrate this approach for four biological systems where short-lived states are of high interest.


Asunto(s)
Microscopía por Crioelectrón/métodos , Nanocables , Robótica , Manejo de Especímenes/métodos , Factores de Tiempo
8.
Bioinformatics ; 37(22): 4172-4179, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34096999

RESUMEN

MOTIVATION: Increasingly comprehensive characterization of cancer-associated genetic alterations has paved the way for the development of highly specific therapeutic vaccines. Predicting precisely the binding and presentation of peptides to major histocompatibility complex (MHC) alleles is an important step toward such therapies. Recent data suggest that presentation of both class I and II epitopes are critical for the induction of a sustained effective immune response. However, the prediction performance for MHC class II has been limited compared to class I. RESULTS: We present a transformer neural network model which leverages self-supervised pretraining from a large corpus of protein sequences. We also propose a multiple instance learning (MIL) framework to deconvolve mass spectrometry data where multiple potential MHC alleles may have presented each peptide. We show that pretraining boosted the performance for these tasks. Combining pretraining and the novel MIL approach, our model outperforms state-of-the-art models based on peptide and MHC sequence only for both binding and cell surface presentation predictions. AVAILABILITY AND IMPLEMENTATION: Our source code is available at https://github.com/s6juncheng/BERTMHC under a noncommercial license. A webserver is available at https://bertmhc.privacy.nlehd.de/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Péptidos , Unión Proteica , Antígenos de Histocompatibilidad Clase II/metabolismo , Péptidos/química , Secuencia de Aminoácidos
9.
Circ Res ; 125(4): 431-448, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31284834

RESUMEN

RATIONALE: Gene expression profiles have been mainly determined by analysis of transcript abundance. However, these analyses cannot capture posttranscriptional gene expression control at the level of translation, which is a key step in the regulation of gene expression, as evidenced by the fact that transcript levels often poorly correlate with protein levels. Furthermore, genome-wide transcript profiling of distinct cell types is challenging due to the fact that lysates from tissues always represent a mixture of cells. OBJECTIVES: This study aimed to develop a new experimental method that overcomes both limitations and to apply this method to perform a genome-wide analysis of gene expression on the translational level in response to pressure overload. METHODS AND RESULTS: By combining ribosome profiling (Ribo-seq) with a ribosome-tagging approach (Ribo-tag), it was possible to determine the translated transcriptome in specific cell types from the heart. After pressure overload, we monitored the cardiac myocyte translatome by purifying tagged cardiac myocyte ribosomes from cardiac lysates and subjecting the ribosome-protected mRNA fragments to deep sequencing. We identified subsets of mRNAs that are regulated at the translational level and found that translational control determines early changes in gene expression in response to cardiac stress in cardiac myocytes. Translationally controlled transcripts are associated with specific biological processes related to translation, protein quality control, and metabolism. Mechanistically, Ribo-seq allowed for the identification of upstream open reading frames in transcripts, which we predict to be important regulators of translation. CONCLUSIONS: This method has the potential to (1) provide a new tool for studying cell-specific gene expression at the level of translation in tissues, (2) reveal new therapeutic targets to prevent cellular remodeling, and (3) trigger follow-up studies that address both, the molecular mechanisms involved in the posttranscriptional control of gene expression in cardiac cells, and the protective functions of proteins expressed in response to cellular stress.


Asunto(s)
Miocitos Cardíacos/metabolismo , Ribosomas/metabolismo , Análisis de Secuencia de ARN/métodos , Disfunción Ventricular/genética , Animales , Células Cultivadas , Ventrículos Cardíacos/citología , Hemodinámica , Masculino , Ratones , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/química , Estrés Fisiológico , Disfunción Ventricular/metabolismo
10.
J Antimicrob Chemother ; 75(10): 2835-2842, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32728686

RESUMEN

OBJECTIVES: To evaluate the efficacy of two novel compounds against mycobacteria and determine the molecular basis of their action on DNA gyrase using structural and mechanistic approaches. METHODS: Redx03863 and Redx04739 were tested in antibacterial assays, and also against their target, DNA gyrase, using DNA supercoiling and ATPase assays. X-ray crystallography was used to determine the structure of the gyrase B protein ATPase sub-domain from Mycobacterium smegmatis complexed with the aminocoumarin drug novobiocin, and structures of the same domain from Mycobacterium thermoresistibile complexed with novobiocin, and also with Redx03863. RESULTS: Both compounds, Redx03863 and Redx04739, were active against selected Gram-positive and Gram-negative species, with Redx03863 being the more potent, and Redx04739 showing selectivity against M. smegmatis. Both compounds were potent inhibitors of the supercoiling and ATPase reactions of DNA gyrase, but did not appreciably affect the ATP-independent relaxation reaction. The structure of Redx03863 bound to the gyrase B protein ATPase sub-domain from M. thermoresistibile shows that it binds at a site adjacent to the ATP- and novobiocin-binding sites. We found that most of the mutations that we made in the Redx03863-binding pocket, based on the structure, rendered gyrase inactive. CONCLUSIONS: Redx03863 and Redx04739 inhibit gyrase by preventing the binding of ATP. The fact that the Redx03863-binding pocket is distinct from that of novobiocin, coupled with the lack of activity of resistant mutants, suggests that such compounds could have potential to be further exploited as antibiotics.


Asunto(s)
Adenosina Trifosfatasas , Girasa de ADN , Mycobacterium , Adenosina Trifosfatasas/efectos de los fármacos , Mycobacteriaceae , Novobiocina/farmacología , Inhibidores de Topoisomerasa II/farmacología
11.
Nucleic Acids Res ; 45(6): 2960-2972, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28126919

RESUMEN

Ribosome profiling via high-throughput sequencing (ribo-seq) is a promising new technique for characterizing the occupancy of ribosomes on messenger RNA (mRNA) at base-pair resolution. The ribosome is responsible for translating mRNA into proteins, so information about its occupancy offers a detailed view of ribosome density and position which could be used to discover new translated open reading frames (ORFs), among other things. In this work, we propose Rp-Bp, an unsupervised Bayesian approach to predict translated ORFs from ribosome profiles. We use state-of-the-art Markov chain Monte Carlo techniques to estimate posterior distributions of the likelihood of translation of each ORF. Hence, an important feature of Rp-Bp is its ability to incorporate and propagate uncertainty in the prediction process. A second novel contribution is automatic Bayesian selection of read lengths and ribosome P-site offsets (BPPS). We empirically demonstrate that our read length selection technique modestly improves sensitivity by identifying more canonical and non-canonical ORFs. Proteomics- and quantitative translation initiation sequencing-based validation verifies the high quality of all of the predictions. Experimental comparison shows that Rp-Bp results in more peptide identifications and proteomics-validated ORF predictions compared to another recent tool for translation prediction.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biosíntesis de Proteínas , Ribosomas/química , Análisis de Secuencia de ARN/métodos , Animales , Teorema de Bayes , Caenorhabditis elegans/genética , Simulación por Computador , Células HEK293 , Humanos , Ratones , Sistemas de Lectura Abierta , Péptidos/química , Proteómica , Ribosomas/metabolismo
12.
PLoS Genet ; 9(3): e1003322, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505380

RESUMEN

Cereal endosperm represents 60% of the calories consumed by human beings worldwide. In addition, cereals also serve as the primary feedstock for livestock. However, the regulatory mechanism of cereal endosperm and seed development is largely unknown. Polycomb complex has been shown to play a key role in the regulation of endosperm development in Arabidopsis, but its role in cereal endosperm development remains obscure. Additionally, the enzyme activities of the polycomb complexes have not been demonstrated in plants. Here we purified the rice OsFIE2-polycomb complex using tandem affinity purification and demonstrated its specific H3 methyltransferase activity. We found that the OsFIE2 gene product was responsible for H3K27me3 production specifically in vivo. Genetic studies showed that a reduction of OsFIE2 expression led to smaller seeds, partially filled seeds, and partial loss of seed dormancy. Gene expression and proteomics analyses found that the starch synthesis rate limiting step enzyme and multiple storage proteins are down-regulated in OsFIE2 reduction lines. Genome wide ChIP-Seq data analysis shows that H3K27me3 is associated with many genes in the young seeds. The H3K27me3 modification and gene expression in a key helix-loop-helix transcription factor is shown to be regulated by OsFIE2. Our results suggest that OsFIE2-polycomb complex positively regulates rice endosperm development and grain filling via a mechanism highly different from that in Arabidopsis.


Asunto(s)
Grano Comestible , Oryza , Proteínas del Grupo Polycomb , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , N-Metiltransferasa de Histona-Lisina , Complejos Multiproteicos , Oryza/genética , Oryza/crecimiento & desarrollo , Latencia en las Plantas/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo
13.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559232

RESUMEN

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.

14.
Nat Struct Mol Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951624

RESUMEN

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.

16.
Front Immunol ; 14: 1265044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045681

RESUMEN

During the COVID-19 pandemic we utilized an AI-driven T cell epitope prediction tool, the NEC Immune Profiler (NIP) to scrutinize and predict regions of T cell immunogenicity (hotspots) from the entire SARS-CoV-2 viral proteome. These immunogenic regions offer potential for the development of universally protective T cell vaccine candidates. Here, we validated and characterized T cell responses to a set of minimal epitopes from these AI-identified universal hotspots. Utilizing a flow cytometry-based T cell activation-induced marker (AIM) assay, we identified 59 validated screening hits, of which 56% (33 peptides) have not been previously reported. Notably, we found that most of these novel epitopes were derived from the non-spike regions of SARS-CoV-2 (Orf1ab, Orf3a, and E). In addition, ex vivo stimulation with NIP-predicted peptides from the spike protein elicited CD8+ T cell response in PBMC isolated from most vaccinated donors. Our data confirm the predictive accuracy of AI platforms modelling bona fide immunogenicity and provide a novel framework for the evaluation of vaccine-induced T cell responses.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Epítopos de Linfocito T , Pandemias/prevención & control , Inteligencia Artificial , Leucocitos Mononucleares , Péptidos
17.
Front Immunol ; 14: 1226445, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799721

RESUMEN

Introduction: Sarcomas are comprised of diverse bone and connective tissue tumors with few effective therapeutic options for locally advanced unresectable and/or metastatic disease. Recent advances in immunotherapy, in particular immune checkpoint inhibition (ICI), have shown promising outcomes in several cancer indications. Unfortunately, ICI therapy has provided only modest clinical responses and seems moderately effective in a subset of the diverse subtypes. Methods: To explore the immune parameters governing ICI therapy resistance or immune escape, we performed whole exome sequencing (WES) on tumors and their matched normal blood, in addition to RNA-seq from tumors of 31 sarcoma patients treated with pembrolizumab. We used advanced computational methods to investigate key immune properties, such as neoantigens and immune cell composition in the tumor microenvironment (TME). Results: A multifactorial analysis suggested that expression of high quality neoantigens in the context of specific immune cells in the TME are key prognostic markers of progression-free survival (PFS). The presence of several types of immune cells, including T cells, B cells and macrophages, in the TME were associated with improved PFS. Importantly, we also found the presence of both CD8+ T cells and neoantigens together was associated with improved survival compared to the presence of CD8+ T cells or neoantigens alone. Interestingly, this trend was not identified with the combined presence of CD8+ T cells and TMB; suggesting that a combined CD8+ T cell and neoantigen effect on PFS was important. Discussion: The outcome of this study may inform future trials that may lead to improved outcomes for sarcoma patients treated with ICI.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Sarcoma/tratamiento farmacológico , Antígenos de Neoplasias , Linfocitos T CD8-positivos , RNA-Seq , Microambiente Tumoral
18.
Front Immunol ; 14: 1210899, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37503339

RESUMEN

Poor overall survival of hematopoietic stem cell transplantation (HSCT) recipients who developed COVID-19 underlies the importance of SARS-CoV-2 vaccination. Previous studies of vaccine efficacy have reported weak humoral responses but conflicting results on T cell immunity. Here, we have examined the relationship between humoral and T cell response in 48 HSCT recipients who received two doses of Moderna's mRNA-1273 or Pfizer/BioNTech's BNT162b2 vaccines. Nearly all HSCT patients had robust T cell immunity regardless of protective humoral responses, with 18/48 (37%, IQR 8.679-5601 BAU/mL) displaying protective IgG anti-receptor binding domain (RBD) levels (>2000 BAU/mL). Flow cytometry analysis of activation induced markers (AIMs) revealed that 90% and 74% of HSCT patients showed reactivity towards immunodominant spike peptides in CD8+ and CD4+ T cells, respectively. The response rate increased to 90% for CD4+ T cells as well when we challenged the cells with a complete set of overlapping peptides spanning the entire spike protein. T cell response was detectable as early as 3 months after transplant, but only CD4+ T cell reactivity correlated with IgG anti-RBD level and time after transplantation. Boosting increased seroconversion rate, while only one patient developed COVID-19 requiring hospitalization. Our data suggest that HSCT recipients with poor serological responses were protected from severe COVID-19 by vaccine-induced T cell responses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Trasplante de Células Madre Hematopoyéticas , Humanos , Vacuna BNT162 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Estudios de Cohortes , Vacunas contra la COVID-19/inmunología , Inmunoglobulina G , Estudios Prospectivos , SARS-CoV-2
19.
Front Immunol ; 14: 1235210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38299149

RESUMEN

People who use drugs (PWUD) are at a high risk of contracting and developing severe coronavirus disease 2019 (COVID-19) and other infectious diseases due to their lifestyle, comorbidities, and the detrimental effects of opioids on cellular immunity. However, there is limited research on vaccine responses in PWUD, particularly regarding the role that T cells play in the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we show that before vaccination, PWUD did not exhibit an increased frequency of preexisting cross-reactive T cells to SARS-CoV-2 and that, despite the inhibitory effects that opioids have on T-cell immunity, standard vaccination can elicit robust polyfunctional CD4+ and CD8+ T-cell responses that were similar to those found in controls. Our findings indicate that vaccination stimulates an effective immune response in PWUD and highlight targeted vaccination as an essential public health instrument for the control of COVID-19 and other infectious diseases in this group of high-risk patients.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Humanos , SARS-CoV-2 , Vacunación , Analgésicos Opioides , ARN Mensajero
20.
BMC Bioinformatics ; 13 Suppl 15: S14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23046392

RESUMEN

In this work, we empirically evaluate the capability of various scoring functions of Bayesian networks for recovering true underlying structures. Similar investigations have been carried out before, but they typically relied on approximate learning algorithms to learn the network structures. The suboptimal structures found by the approximation methods have unknown quality and may affect the reliability of their conclusions. Our study uses an optimal algorithm to learn Bayesian network structures from datasets generated from a set of gold standard Bayesian networks. Because all optimal algorithms always learn equivalent networks, this ensures that only the choice of scoring function affects the learned networks. Another shortcoming of the previous studies stems from their use of random synthetic networks as test cases. There is no guarantee that these networks reflect real-world data. We use real-world data to generate our gold-standard structures, so our experimental design more closely approximates real-world situations. A major finding of our study suggests that, in contrast to results reported by several prior works, the Minimum Description Length (MDL) (or equivalently, Bayesian information criterion (BIC)) consistently outperforms other scoring functions such as Akaike's information criterion (AIC), Bayesian Dirichlet equivalence score (BDeu), and factorized normalized maximum likelihood (fNML) in recovering the underlying Bayesian network structures. We believe this finding is a result of using both datasets generated from real-world applications rather than from random processes used in previous studies and learning algorithms to select high-scoring structures rather than selecting random models. Other findings of our study support existing work, e.g., large sample sizes result in learning structures closer to the true underlying structure; the BDeu score is sensitive to the parameter settings; and the fNML performs pretty well on small datasets. We also tested a greedy hill climbing algorithm and observed similar results as the optimal algorithm.


Asunto(s)
Algoritmos , Teorema de Bayes , Modelos Estadísticos , Biología Computacional/métodos , Funciones de Verosimilitud , Reproducibilidad de los Resultados , Tamaño de la Muestra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA