Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Immunol ; 212(11): 1733-1743, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656392

RESUMEN

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, Ags. B cells also reside and develop in the thymus, although their functions are less clear. During "thymic involution," a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ∼1% of human neonatal thymocytes but up to ∼10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. In this article, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- versus postinvolution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells postinvolution. We also performed RNA sequencing on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is, to our knowledge, the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution and establishing the highly genetically manipulatable zebrafish model as a template for involution studies.


Asunto(s)
Linfocitos B , Timo , Pez Cebra , Animales , Pez Cebra/inmunología , Timo/inmunología , Timo/citología , Linfocitos B/inmunología , Animales Modificados Genéticamente , Linfocitos T/inmunología , Humanos , Diferenciación Celular/inmunología , Modelos Animales
2.
Gene ; 927: 148712, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901535

RESUMEN

MFGE8 is a major exosome (EV) protein known to mediate inflammation and atherosclerosis in type 2 diabetes mellitus (T2DM) in animal studies. The pathophysiological role of this protein in obesity, T2DM, and cardiovascular disease is less investigated in humans. Earlier we reported a rare Asian Indian population-specific missense variant (rs371227978; Arg148His) in the MFGE8 gene associated with increased circulating Mfge8 and T2DM. We have further investigated the role of Mfge8 with T2DM risk in additional Asian Indians (n = 4897) and Europeans and other multiethnic cohorts from UK Biobank (UKBB) (n = 455,808) and the US (n = 1150). We also evaluated the exposure of Mfge8-enriched human EVs in zebrafish (ZF) for their impact on cardiometabolic organ system. Most individual carriers of Arg148His variant not only had high circulating Mfge8 but also revealed a positive significant correlation with glucose (r = 0.42; p = 4.9 × 10-04), while the non-carriers showed a negative correlation of Mfge8 with glucose (r = -0.38; p = 0.001) in Asian Indians. The same variant was monomorphic in non-South Asian ethnicities. Even without the variant, serum Mfge8 correlated significantly with blood glucose in other non-South Asian ethnicities (r = 0.47; p = 2.2 × 10-13). Since Mfge8 is an EV marker, we tested the exposure of Mfge8-enriched human EVs to ZF larvae as an exploratory study. The ZF larvae showed rapid effects on insulin-sensitive organs, developing fatty liver disease, heart hypertrophy and exhibiting redundant growth with poor muscular architecture with and without the high-fat diet (HFD). In contrast, the control group fishes developed fatty liver disease and heart hypertrophy only after the HFD feeding. Backed with strong support from animal studies on the role of Mfge8 in obesity, insulin resistance, and atherosclerosis, the current research suggests that circulating Mfge8 may become a potential marker for predicting the risk of T2DM and cardiovascular disease in humans.

3.
bioRxiv ; 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37546788

RESUMEN

The thymus is the site of T lymphocyte development and T cell education to recognize foreign, but not self, antigens. B cells also reside and develop in the thymus, although their functions are less clear. During 'thymic involution,' a process of lymphoid atrophy and adipose replacement linked to sexual maturation, thymocytes decline. However, thymic B cells decrease far less than T cells, such that B cells comprise ~1% of human neonatal thymocytes, but up to ~10% in adults. All jawed vertebrates possess a thymus, and we and others have shown zebrafish (Danio rerio) also have thymic B cells. Here, we investigated the precise identities of zebrafish thymic T and B cells and how they change with involution. We assessed the timing and specific details of zebrafish thymic involution using multiple lymphocyte-specific, fluorophore-labeled transgenic lines, quantifying the changes in thymic T- and B-lymphocytes pre- vs. post-involution. Our results prove that, as in humans, zebrafish thymic B cells increase relative to T cells post-involution. We also performed RNA sequencing (RNA-seq) on D. rerio thymic and marrow lymphocytes of four novel double-transgenic lines, identifying distinct populations of immature T and B cells. Collectively, this is the first comprehensive analysis of zebrafish thymic involution, demonstrating its similarity to human involution, and establishing the highly genetically-manipulatable zebrafish model as a template for involution studies.

4.
PLoS One ; 14(8): e0211661, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31369557

RESUMEN

Dyslipidemia is a well-established risk factor for cardiovascular diseases. Although, advances in genome-wide technologies have enabled the discovery of hundreds of genes associated with blood lipid phenotypes, most of the heritability remains unexplained. Here we performed targeted resequencing of 13 bona fide candidate genes of dyslipidemia to identify the underlying biological functions. We sequenced 940 Sikh subjects with extreme serum levels of hypertriglyceridemia (HTG) and 2,355 subjects were used for replication studies; all 3,295 participants were part of the Asian Indians Diabetic Heart Study. Gene-centric analysis revealed burden of variants for increasing HTG risk in GCKR (p = 2.1x10-5), LPL (p = 1.6x10-3) and MLXIPL (p = 1.6x10-2) genes. Of these, three missense and damaging variants within GCKR were further examined for functional consequences in vivo using a transgenic zebrafish model. All three mutations were South Asian population-specific and were largely absent in other multiethnic populations of Exome Aggregation Consortium. We built different transgenic models of human GCKR with and without mutations and analyzed the effects of dietary changes in vivo. Despite the short-term of feeding, profound phenotypic changes were apparent in hepatocyte histology and fat deposition associated with increased expression of GCKR in response to a high fat diet (HFD). Liver histology of the GCKRmut showed severe fatty metamorphosis which correlated with ~7 fold increase in the mRNA expression in the GCKRmut fish even in the absence of a high fat diet. These findings suggest that functionally disruptive GCKR variants not only increase the risk of HTG but may enhance ectopic lipid/fat storage defects in absence of obesity and HFD. To our knowledge, this is the first transgenic zebrafish model of a putative human disease gene built to accurately assess the influence of genetic changes and their phenotypic consequences in vivo.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dislipidemias/genética , Etnicidad/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Hipertrigliceridemia/genética , Polimorfismo de Nucleótido Simple , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Dieta Alta en Grasa/efectos adversos , Dislipidemias/epidemiología , Dislipidemias/patología , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Humanos , Hipertrigliceridemia/epidemiología , Hipertrigliceridemia/patología , Incidencia , India/etnología , Masculino , Persona de Mediana Edad , Mutación , Linaje , Fenotipo , Estados Unidos , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA