Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Allergy Clin Immunol ; 133(4): 1116-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24332219

RESUMEN

BACKGROUND: Recombination-activating gene 1 (RAG1) deficiency results in severe combined immunodeficiency (SCID) caused by a complete lack of T and B lymphocytes. If untreated, patients succumb to recurrent infections. OBJECTIVES: We sought to develop lentiviral gene therapy for RAG1-induced SCID and to test its safety. METHODS: Constructs containing the viral spleen-focus-forming virus (SF), ubiquitous promoters, or cell type-restricted promoters driving sequence-optimized RAG1 were compared for efficacy and safety in sublethally preconditioned Rag1(-/-) mice undergoing transplantation with transduced bone marrow progenitors. RESULTS: Peripheral blood CD3(+) T-cell reconstitution was achieved with SF, ubiquitous promoters, and cell type-restricted promoters but 3- to 18-fold lower than that seen in wild-type mice, and with a compromised CD4(+)/CD8(+) ratio. Mitogen-mediated T-cell responses and T cell-dependent and T cell-independent B-cell responses were not restored, and T-cell receptor patterns were skewed. Reconstitution of mature peripheral blood B cells was approximately 20-fold less for the SF vector than in wild-type mice and often not detectable with the other promoters, and plasma immunoglobulin levels were abnormal. Two months after transplantation, gene therapy-treated mice had rashes with cellular tissue infiltrates, activated peripheral blood CD44(+)CD69(+) T cells, high plasma IgE levels, antibodies against double-stranded DNA, and increased B cell-activating factor levels. Only rather high SF vector copy numbers could boost T- and B-cell reconstitution, but mRNA expression levels during T- and B-cell progenitor stages consistently remained less than wild-type levels. CONCLUSIONS: These results underline that further development is required for improved expression to successfully treat patients with RAG1-induced SCID while maintaining low vector copy numbers and minimizing potential risks, including autoimmune reactions resembling Omenn syndrome.


Asunto(s)
Terapia Genética , Vectores Genéticos/genética , Proteínas de Homeodominio/genética , Lentivirus/genética , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/terapia , Animales , Autoinmunidad/genética , Células de la Médula Ósea/metabolismo , Modelos Animales de Enfermedad , Femenino , Dosificación de Gen , Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Masculino , Ratones , Ratones Noqueados , Fenotipo , Inmunodeficiencia Combinada Grave/inmunología , Bazo/inmunología , Linfocitos T/metabolismo , Timo/inmunología , Transducción Genética , Quimera por Trasplante
2.
Microbiology (Reading) ; 156(Pt 3): 940-949, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19942658

RESUMEN

The incorporation of dUMP during replication or the deamination of cytosine in DNA results in the occurrence of uracils in genomes. To maintain genomic integrity, uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base-excision repair pathway. Here, we cloned, purified and biochemically characterized a family 5 UDG, UdgB, from Mycobacterium smegmatis to allow us to use it as a model organism to investigate the physiological significance of the novel enzyme. Studies with knockout strains showed that compared with the wild-type parent, the mutation rate of the udgB( -) strain was approximately twofold higher, whereas the mutation rate of a strain deficient in the family 1 UDG (ung(- )) was found to be approximately 8.4-fold higher. Interestingly, the mutation rate of the double-knockout (ung(-)/ udgB(-)) strain was remarkably high, at approximately 19.6-fold. While CG to TA mutations predominated in the ung(-) and ung(-)/udgB(-) strains, AT to GC mutations were enhanced in the udgB(-) strain. The ung(-)/udgB(-) strain was notably more sensitive to acidified nitrite and hydrogen peroxide stresses compared with the single knockouts (ung(-) or udgB(-)). These observations reveal a synergistic effect of UdgB and Ung in DNA repair, and could have implications for the generation of attenuated strains of Mycobacterium tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Daño del ADN , ADN Bacteriano/metabolismo , Mycobacterium smegmatis/enzimología , Uracil-ADN Glicosidasa/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Clonación Molecular , Reparación del ADN , Técnicas de Inactivación de Genes , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Alineación de Secuencia , Nitrito de Sodio/farmacología , Uracil-ADN Glicosidasa/genética
3.
Microbiology (Reading) ; 156(Pt 5): 1565-1573, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20150242

RESUMEN

The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of Mycobacterium tuberculosis worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated M. smegmatis strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.


Asunto(s)
Antibióticos Antituberculosos/farmacología , ARN Polimerasas Dirigidas por ADN/genética , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Rifampin/farmacología , Secuencia de Aminoácidos , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Conformación Proteica , Eliminación de Secuencia , Transcripción Genética
4.
Microbiology (Reading) ; 156(Pt 1): 88-93, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19778963

RESUMEN

Oxidative damage to DNA results in the occurrence of 7,8-dihydro-8-oxoguanine (8-oxoG) in the genome. In eubacteria, repair of such damage is initiated by two major base-excision repair enzymes, MutM and MutY. We generated a MutY-deficient strain of Mycobacterium smegmatis to investigate the role of this enzyme in DNA repair. The MutY deficiency in M. smegmatis did not result in either a noteworthy susceptibility to oxidative stress or an increase in the mutation rate. However, rifampicin-resistant isolates of the MutY-deficient strain showed distinct mutations in the rifampicin-resistance-determining region of rpoB. Besides the expected C to A (or G to T) mutations, an increase in A to C (or T to G) mutations was also observed. Biochemical characterization of mycobacterial MutY (M. smegmatis and M. tuberculosis) revealed an expected excision of A opposite 8-oxoG in DNA. Additionally, excision of G and T opposite 8-oxoG was detected. MutY formed complexes with DNA containing 8-oxoG : A, 8-oxoG : G or 8-oxoG : T but not 8-oxoG : C pairs. Primer extension reactions in cell-free extracts of M. smegmatis suggested error-prone incorporation of nucleotides into the DNA. Based on these observations, we discuss the physiological role of MutY in specific mutation prevention in mycobacteria.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Glicosilasas/metabolismo , Reparación del ADN , Mycobacterium smegmatis/genética , Animales , Proteínas Bacterianas/genética , Línea Celular , Daño del ADN , ADN Glicosilasas/genética , ADN Bacteriano/genética , Guanina/análogos & derivados , Guanina/metabolismo , Peróxido de Hidrógeno/farmacología , Ratones , Mutación , Mycobacterium smegmatis/metabolismo , Rifampin/metabolismo , Especificidad por Sustrato
5.
Immunol Res ; 54(1-3): 233-46, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22569912

RESUMEN

The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Recombinación V(D)J , Animales , Humanos , Modelos Moleculares , Inmunodeficiencia Combinada Grave/genética
6.
Tuberculosis (Edinb) ; 89(6): 453-64, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19595631

RESUMEN

The translation elongation factor G (EFG) is encoded by the fusA gene. Several bacteria possess a second fusA-like locus, fusA2 which encodes EFG2. A comparison of EFG and EFG2 from various bacteria reveals that EFG2 preserves domain organization and maintains significant sequence homology with EFG, suggesting that EFG2 may function as an elongation factor. However, with the single exception of a recent study on Thermus thermophilus EFG2, this class of EFG-like factors has not been investigated. Here, we have characterized EFG2 (MSMEG_6535) from Mycobacterium smegmatis. Expression of EFG2 was detected in stationary phase cultures of M. smegmatis (Msm). Our in vitro studies show that while MsmEFG2 binds guanine nucleotides, it lacks the ribosome-dependent GTPase activity characteristic of EFGs. Furthermore, unlike MsmEFG (MSMEG_1400), MsmEFG2 failed to rescue an E. coli strain harboring a temperature-sensitive allele of EFG, for its growth at the non-permissive temperature. Subsequent experiments showed that the fusA2 gene could be disrupted in M. smegmatis mc(2)155 with Kan(R) marker. The M. smegmatis fusA2::kan strain was viable and showed growth kinetics similar to that of the parent strain (wild-type for fusA2). However, in the growth competition assays, the disruption of fusA2 was found to confer a fitness disadvantage to M. smegmatis, raising the possibility that EFG2 is of some physiological relevance to mycobacteria.


Asunto(s)
Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium smegmatis/genética , Factor G de Elongación Peptídica/genética , Secuencia de Bases , Humanos , Mycobacterium smegmatis/aislamiento & purificación , ARN Mensajero/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA