Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Chemistry ; 30(4): e202302930, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37926677

RESUMEN

New synthesized bipyrimidine-based chromophores presenting alkoxystyryl donor groups carrying aliphatic achiral and chiral chains in the 4 position, connected to electron-accepting 2,2-bipyrimidine cores have been synthesized. Their linear and nonlinear optical (NLO) properties were investigated as well as their mesomorphic properties by various techniques (light-transmission measurements, polarized-light optical microscopy, differential scanning calorimetry measurements and two-photon excited fluorescence). The derivatives with achiral linear carbon chains were found to exhibit liquid-crystal properties with the formation smectic phases over large temperature ranges, which were confirmed by small-angle X-ray scattering analysis via stacking models. The nonlinear optical properties in the solid state for derivatives with C14 and the citronellol chains have been studied by wide-field second-harmonic generation and multi-photon fluorescence imaging, confirming centrosymmetry for these achiral mesogens and their excellent third-order nonlinearity whereas the chiral compound exhibits non-centrosymmetric organization resulting in a strong Second Harmonic Generation at the crystal state.

2.
Molecules ; 29(1)2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38202842

RESUMEN

In this investigation, a multifunctional visible-light TX-based photosensitizer containing a siloxane moiety (TXS) was designed with a good overall yield of 54%. The addition of a siloxane moiety enabled the incorporation of a TX photosensitizer into a siloxane network by photoinduced sol-gel chemistry, thus avoiding its release. Both liquid 1H and solid-state 29Si NMR measurements undeniably confirmed the formation of photoacids resulting from the photolysis of the TXS/electron acceptor molecule (Iodonium salt), which promoted the photoinduced hydrolysis/condensation of the trimethoxysilane groups of TXS, with a high degree of condensation of its inorganic network. Notably, the laser flash photolysis, fluorescence, and electron paramagnetic resonance spin-trapping (EPR ST) experiments demonstrated that TXS could react with Iod through an electron transfer reaction through its excited states, leading to the formation of radical initiating species. Interestingly, the TXS/Iod was demonstrated to be an efficient photoinitiating system for free-radical (FRP) and cationic (CP) polymerization under LEDs@385, 405, and 455 nm. In particular, whatever the epoxy monomer mixtures used, remarkable final epoxy conversions were achieved up to 100% under air. In this latter case, we demonstrated that both the photoinduced sol-gel process (hydrolysis of trimethoxysilane groups) and the cationic photopolymerization occurred simultaneously.

3.
Inorg Chem ; 62(49): 20349-20363, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994054

RESUMEN

A fundamental challenge for phototriggered therapies is to obtain robust molecular frameworks that can withstand biological media. Photoactivatable nitric oxide (NO) releasing molecules (photoNORMs) based on ruthenium nitrosyl (RuNO) complexes are among the most studied systems due to several appealing features that make them attractive for therapeutic applications. Nevertheless, the propensity of the NO ligand to be attacked by nucleophiles frequently manifests as significant instability in water for this class of photoNORMs. Our approach to overcome this limitation involved enhancing the Ru-NO π-backbonding to lower the electrophilicity at the NO by replacing the commonly employed 2,2'-bipyridine (bpy) ligand by an anionic, electron-rich, acetylacetonate (acac). A versatile and convenient synthetic route is developed and applied for the preparation of a large library of RuNO photoNORMs with the general formula [RuNO(tpy)(acac)]2+ (tpy = 2,2':6',2″-terpyridine). A combined theoretical and experimental analysis of the Ru-NO bonding in these complexes is presented, supported by extensive single-crystal X-ray diffraction experiments and by topological analyses of the electron charge density by DFT. The enhanced π-back-bonding, systematically evidenced by several techniques, resulted in a remarkable stability in water for these complexes, where significant NO release efficiencies were recorded. We finally demonstrate the possibility of obtaining sophisticated water-stable multipolar NO-delivery platforms that can be activated in the near-IR region by two-photon absorption (TPA), as demonstrated for an octupolar complex with a TPA cross section of 1530 GM at λ = 800 nm and for which NO photorelease was demonstrated under TPA irradiation in aqueous media.

4.
Angew Chem Int Ed Engl ; 62(43): e202305963, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37539471

RESUMEN

A near-infrared-absorbing heptamethine (HM+ ) incorporating three bulky benzo[cd]indole heterocycles was designed to efficiently prevent self-aggregation of the dye, which results in a strong enhancement of its photoinitiating reactivity as compared to a parent bis-benzo[cd]indole heptamethine (HMCl+ ) used as a reference system. In this context, we highlight an efficient free-radical NIR-polymerization up to a 100 % acrylates C=C bonds conversion even under air conditions. Such an important initiating performance was obtained by incorporating our NIR-sensitizer into a three-component system leading to its self-regeneration. This original photoredox cycle was thoroughly investigated through the identification of each intermediary species using EPR spectroscopy.

5.
Chemistry ; 28(62): e202201692, 2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-35916438

RESUMEN

One monometallic and three bimetallic ruthenium nitrosyl (RuNO) complexes are presented and fully characterized in reference to a parent monometallic complex of formula [FTRu(bpy)(NO)]3+ , where FT is a fluorenyl-substituted terpyridine ligand, and bpy the 2,2'-bipyridine. These new complexes are built with the new ligands FFT, TFT, TFFT, and TF-CC-TF (where an alkyne C≡C group is inserted between two fluorenes). The crystal structures of the bis-RuNO2 and bis-RuNO complexes built from the TFT ligand are presented. The evolution of the spectroscopic features (intensities and energies) along the series, at one-photon absorption (OPA) correlates well with the TD-DFT computations. A spectacular effect is observed at two-photon absorption (TPA) with a large enhancement of the molecular cross-section (σTPA ), in the bimetallic species. In the best case, σTPA is equal to 1523±98 GM at 700 nm, in the therapeutic window of transparency of biological tissues. All compounds are capable of releasing NO⋅ under irradiation, which leads to promising applications in TPA-based drug delivery.


Asunto(s)
Rutenio , Rutenio/química , Óxido Nítrico , Ligandos , Fotones , Teoría Funcional de la Densidad
6.
Molecules ; 27(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268594

RESUMEN

One- and two-photon characterizations of a series of hetero- and homoleptic [RuL3-n(bpy)n]2+ (n = 0, 1, 2) complexes carrying bipyridine π-extended ligands (L), have been carried out. These π-extended D-π-A-A-π-D-type ligands (L), where the electron donor units (D) are based on diphenylamine, carbazolyl, or fluorenyl units, have been designed to modulate the conjugation extension and the donating effect. Density functional theory calculations were performed in order to rationalize the observed spectra. Calculations show that the electronic structure of the π-extended ligands has a pronounced effect on the composition of HOMO and LUMO and on the metallic contribution to frontier MOs, resulting in strikingly different nonlinear properties. This work demonstrates that ILCT transitions are the keystone of one- and two-photon absorption bands in the studied systems and reveals how much MLCT and LLCT charge transfers play a decisive role on the two-photon properties of both hetero- and homoleptic ruthenium complexes through cooperative or suppressive effects.

7.
Angew Chem Int Ed Engl ; 61(18): e202117700, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35128770

RESUMEN

Three-dimensional (3D) printing and especially VAT photopolymerization leads to cross-linked materials with high thermal, chemical, and mechanical stability. Nevertheless, these properties are incompatible with requirements of degradability and re/upcyclability. We show here that thionolactone and in particular dibenzo[c,e]-oxepane-5-thione (DOT) can be used as an additive (2 wt %) to acrylate-based resins to introduce weak bonds into the network via a radical ring-opening polymerization process. The low amount of additive makes it possible to modify the printability of the resin only slightly, keep its resolution intact, and maintain the mechanical properties of the 3D object. The resin with additive was used in UV microfabrication and two-photon stereolithography setups and commercial 3D printers. The fabricated objects were shown to degrade in basic solvent as well in a homemade compost. The rate of degradation is nonetheless dependent on the size of the object. This feature was used to prepare 3D objects with support structures that could be easily solubilized.


Asunto(s)
Impresión Tridimensional , Polimerizacion
8.
Phys Chem Chem Phys ; 23(20): 11807-11817, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33987634

RESUMEN

A family comprising seven arylimido-polyoxometalate (POM) hybrid chromophores (three of which are new), with linear dipolar, C2v and linear centrosymmetric geometries have been synthesised and studied by electronic absorption spectroscopy, electrochemistry, Z-scans (two photon absorption, TPA) and computation (DFT/TD-DFT). These reveal that POM acceptor units are an effective basis for TPA materials: the centrosymmetric bis-POM chromophores produce significant cross sections (δ up to 82 GM) from a single aryl bridge, a similar performance to larger dipolar π-systems combining carbazole or diphenylamino donors with the imido-POM acceptor. DFT/TD-DFT calculations indicate strong communication between POM and organic components is responsible for the linear and non-linear optical behaviour of these compounds, while electrochemical measurements reveal class II mixed valence behaviour resulting from an interplay of through-bond and through-space effects.

9.
Chemphyschem ; 21(20): 2301-2310, 2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32767640

RESUMEN

The photophysical properties and the photoinitiating reactivity of a ditopic alkoxynitrostilbene were compared to those of its single branch chromophore used as a reference. Whereas a trivial additive effect is observed when considering the one- and two-photon absorption properties, a clear and very significant amplification has been highlighted for the photoreactivity of this free radical photoinitiator which was used as a hydrogen abstractor in presence of an aliphatic amine co-reactant. We indeed demonstrate that the proximity of two nitroaromatics moieties within the same molecular architecture gives rise to an original cycling mechanism based on a stepwise photo triggering of each photoredox center followed by a subsequent regenerative process. The combination of a high two-photon absorption cross-section (δ780nm ≈330 GM) with a strong enhancement in photoreactivity makes this nitrostilbene bichromophore a very suitable candidate for two-photon polymerization applications.

10.
Phys Chem Chem Phys ; 22(7): 4165-4176, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32040113

RESUMEN

This contribution aims at investigating the branching effect on the steady state, time resolved fluorescence and two-photon absorption (2PA) properties of dimethylamino and diphenylamino substituted styrylpyrimidine derivatives, by means of a combined experimental and theoretical study. In contrast to classical branched molecules with a triphenylamine central core and electron accepting groups at the periphery, here, branched molecules with reverse topology and different symmetries are examined, namely a styrylpyrimidine group is used as the electron withdrawing core and dimethylamino or diphenylamino donors are incorporated at the periphery. Besides, compared to the great majority of existing branched systems, the herein studied molecules do not have C3 symmetry. For this reason, the region of the linear and non-linear optical spectra of the two and three branched chromophores is actually similar. Interestingly, while the one-photon absorption spectra of one-branched systems versus two- or three-branched ones are spectrally shifted, there is almost no spectral shift in the main 2PA spectral region. Meanwhile, there is still an enhancement of both linear and nonlinear optical responses. Overall, here we developed a strategy that enhances the 2PA response while maintaining the spectral position. Specifically, 2PA cross section values as high as 500 GM have been obtained for the diphenylamino A-(π-D)3 molecule in dichloromethane.

11.
Chemistry ; 25(39): 9242-9252, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31021454

RESUMEN

In the search of smarter routes to control the conditions of N-heterocyclic carbene (NHCs) formation, a two-component air-stable NHC photogenerating system is reported. It relies on the irradiation at 365 nm of a mixture of 2-isopropylthioxanthone (ITX) with 1,3-bis(mesityl)imidazoli(ni)um tetraphenylborate. The photoinduced liberation of NHC is evidenced by reaction with a mesitoyl radical to form an NHC-radical adduct detectable by electron spin resonance spectroscopy. The NHC yield can be determined by 1 H NMR spectroscopy through the formation of a soluble and stable NHC-carbodiimide adduct. To deprotonate the azolium salt and liberate the NHC, a mechanism is proposed in which the role of base is played by ITX radical anion formed in situ by a primary photoinduced electron-transfer reaction between electronically excited ITX (oxidant) and BPh4 - (reductant). An NHC yield as high as 70 % is achieved upon starting with a stoichiometric ratio of ITX and azolium salt. Three different photoNHC-mediated polymerizations are described: synthesis of polyurethane and polyester by organocatalyzed step-growth polymerization and ring-opening copolymerization, respectively, and generation of polynorbornene by ring-opening metathesis polymerization using an NHC-coordinated Ru catalyst formed in situ.

12.
J Am Chem Soc ; 140(9): 3339-3344, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29432001

RESUMEN

The use of UV/visible light irradiation as a means to initiate organic syntheses is increasingly attractive due to the high spatial and temporal control conferred by photochemical processes. The aim of this work is thus to demonstrate that alkoxyamines bearing a chromophore on the alkyl moiety can provide a photoprotecting group for the sensitive nitroxide functionality, that is known to degrade through redox processes. The dissociation of various photosensitive alkoxyamines was studied from 223 to 298 K under UV/visible irradiation, depending on the nature of the chromophore. In each case a rapid (typically in less than 1 h) and near-quantitative dissociation was observed. As an illustration of the interest of this approach, a pyrene-based alkoxyamine was employed for the spatially controlled coupling of polymer chains onto Si wafers to produce micropatterned surfaces.

13.
Chemistry ; 23(62): 15783-15789, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28857291

RESUMEN

A series of donor-π-acceptor-type sulfonium salt photoacid generators (PAGs) were designed and synthesized by systematically changing electron-donating groups, π-conjugated systems, electron-withdrawing groups, and the number of branches through molecular engineering. These PAGs can effectively decompose under UV/Vis irradiation from a light-emitting diode (LED) light source because of the matching absorption and emitting spectra of the LEDs. The absorption and acid-generation properties of these sulfonium salts were elucidated by UV/Vis spectroscopy and so forth. Results indicated that the PAG performance benefited from the introduction of strong electron-donating groups, specific π-conjugated structures, certain electron-withdrawing groups, or two-branched structures. Most sulfonium salts showed potential as photoinitiators under irradiation by a wide variety of UV and visible LEDs.

14.
Phys Chem Chem Phys ; 19(24): 15980-15987, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28594024

RESUMEN

Active optical waveguides based on functional small organic molecules in micro/nano regime have attracted great interest for their potential applications in high speed miniaturized photonic integrations. Here, we report on the active waveguiding properties of millimeter sized single crystals of a newly synthesized thiophene-based oligomer. These large crystals exhibit low optical loss compared to other organic nanostructures, and optical losses depend on the emission energy. Moreover, we find that the coupling of photoluminescence to waveguide modes is very efficient, typically greater than 40%. These features indicate that such perfect single crystals with a low density of defects and extremely smooth surfaces exhibit low propagation loss, which makes them good candidates for the design and the fabrication of novel organic optical fibers and lasers.

15.
Chemistry ; 21(22): 8262-70, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25846371

RESUMEN

Transition-metal complexes containing stimuli-responsive systems are attractive for applications in optical devices, photonic memory, photosensing, as well as luminescence imaging. Amongst them, photochromic metal complexes offer the possibility of combining the specific properties of the metal centre and the optical response of the photochromic group. The synthesis, the electrochemical properties and the photophysical characterisation of a series of donor-acceptor azobenzene derivatives that possess bipyridine groups connected to a 4-dialkylaminoazobenzene moiety through various linkers are presented. DFT and TD-DFT calculations were performed to complement the experimental findings and contribute to their interpretation. The position and nature of the linker (ethynyl, triazolyl, none) were engineered and shown to induce different electronic coupling between donor and acceptor in ligands and complexes. This in turn led to strong modulations in terms of photoisomerisation of the ligands and complexes.

16.
Phys Chem Chem Phys ; 16(25): 12826-37, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24847503

RESUMEN

The photophysical and nonlinear absorption properties of an oligo(phenylenethienylene)s series (nTBT) are investigated in this article. The length of the chromophore is gradually increased from one to four phenylenethienylene repeating units in order to evaluate the effects of the electronic delocalization on the two-photon absorption cross sections (δ). According to the excitation anisotropy measurements and quantum chemical calculations, two electronic transitions with distinctive symmetries, 1Ag → 1Bu and 1Ag → 2Ag, are present in the low energy region of the linear absorption spectrum. The lowest-energy transition 1Ag → 1Bu is one-photon allowed but two-photon forbidden and implies an electronic charge delocalization all along the oligomer segment whereas the weakly-allowed 1Ag → 2Ag transition exhibits a transition moment perpendicular to the average plane of the chromophore. The latter transition mainly contributes to the two-photon absorption ability of the oligomers. All derivatives are poorly solvatochromic and the breakdown of the mirror symmetry rule observed between absorption and fluorescence spectra at room temperature has been attributed to a photoinduced geometrical relaxation leading to a very efficient planarization process of the oligomer irrespective of its size. Increasing the oligomer length results in a slight shift of the two-photon absorption band (∼1300 cm(-1)) and in a drastic increase of δ from 2 ± 1 GM up to 802 ± 160 GM for 1TBT and 4TBT respectively. Based on a three-level model, it was found that main contributions to the strong increase of δ stem from the transition moments Mge and Mee' which are multiplied by a factor of 2.8 and 5 when going from 1TBT to 4TBT.


Asunto(s)
Fotones , Polímeros/química , Adsorción , Espectroscopía de Protones por Resonancia Magnética , Espectrofotometría Infrarroja
17.
J Phys Chem B ; 128(41): 10086-10102, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39361506

RESUMEN

Organic dyes-based photothermal agents (OPTAs) have received increasing attention as alternative to inorganic materials due to their higher biocompatibility and extensive diversification. Maximizing nonradiative deexcitation channels is crucial to improve the photothermal conversion efficiency (PCE) of OPTAs. This is typically achieved through individual molecular design or collective enhancement using supramolecular strategies. Furthermore, photothermal therapy (PTT) generally relies on linear one-photon absorption of the light source by the OPTA, with less consideration given to nonlinear two-photon absorption (2PA) strategies, despite their potential benefits. Here, a synergistic strategy, which combines intramolecular and intermolecular quenching, is employed to maximize the photothermal efficiency of diphenylamino-substituted distyryl dicyanobenzene (DSB), an outstanding two-photon-absorbing chromophore. One to three DSB units have been introduced on the conic p-tert-butyl-calix[4]arene (CX), serving as a preorganizing platform to allow aggregate formation and promote intramolecular quenching within the multichromophoric systems. Importantly, the multichromophoric molecules had very high two-photon absorption capabilities with cross sections (δ2PA) reaching maximal values of 3290 GM at 810 nm. Experimental data accompanied by large-scale molecular dynamics simulations and time-dependent density functional theory calculations shed light onto the interaction mechanism in those multiple DSB-appended CX compounds to rationalize their optical properties. Then, the formulation with Pluronic F127 amphiphile yields water-dispersible nanoprecipitates (Nps), in which the PCE is further maximized and the photobleaching is reduced due to the combination of intra- and intermolecular quenching. The high two-photon absorption in the near-infrared (NIR) window associated with the high PCE of these nanosized OPTAs could serve as a basis to future in vivo 2P-PTT applications.

18.
Chem Asian J ; 19(9): e202400112, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38353579

RESUMEN

An original series of bipyrimidine-based chromophores featuring alkoxystyryl donor groups bearing short chiral (S)-2-methylbutyl chains in positions 4, 3,4 and 3,5, connected to electron-accepting 2,2-bipyrimidine rings, has been developed. Their linear and non-linear optical properties were studied using a variety of techniques, including one- and two-photon absorption spectroscopy, fluorescence measurements, as well as Hyper-Rayleigh scattering to determine the first hyperpolarizabilities. Their electronic and geometrical properties were rationalized by TD-DFT calculations. The thermal properties of the compounds were also investigated by a combination of polarized light optical microscopy, differential scanning calorimetry measurements and small-angle X-ray scattering experiments. The derivatives were found not to have mesomorphic properties, but to exhibit melting temperatures or cold crystallization behavior that enabled the isolation of well-organized thin films. The nonlinear optical properties of amorphous or crystalline thin films were studied by wide-field second harmonic generation and multiphoton fluorescence imaging, confirming that non-centrosymmetric crystal organization enables strong second and third harmonic generation. This new series confirms that our strategy of functionalizing 3D organic octupoles with short chiral chains to generate non-centrosymmetric organized thin films enables the development of highly second order nonlinear optical active materials without the use of corona-poling or tedious deposition techniques.

19.
Chemphyschem ; 14(12): 2725-36, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23821579

RESUMEN

The nonlinear properties and the photophysical behavior of two π-conjugated chromophores that incorporate an electron-deficient pyrimidine core (A) and γ-methylenepyrans as terminal donor (D) groups have been thoroughly investigated. Both dipolar and quadrupolar branching strategies are explored and rationalized on the basis of the Frenkel exciton model. Even though a cooperative effect is clearly observed if the dimensionality is increased, the nonlinear optical (NLO) response of this series is moderate if one considers the nature of the D/A couple and the size of the chromophores (as measured by the number of π electrons). This effect was attributed to a disruption in the electronic conjugation within the dyes' scaffold for which the geometry deviates from planarity owing to a noticeable twisting of the pyranylidene end-groups. This latter structural parameter also has a strong influence on the excited-state dynamics, which leads to a very efficient fluorescence quenching.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Piranos/química , Pirimidinas/química , Colorantes Fluorescentes/química , Cinética , Conformación Molecular , Teoría Cuántica , Espectrofotometría Ultravioleta
20.
Phys Chem Chem Phys ; 14(2): 562-74, 2012 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-22071595

RESUMEN

The excited-state dynamics of a donor-acceptor phenol-pyridinium biaryl cation was investigated in various solvents by femtosecond transient absorption spectroscopy and temperature dependent steady-state emission measurements. After excitation to a near-planar Franck-Condon delocalized excited S(1)(DE) state with mesomeric character, three fast relaxation processes are well resolved: solvation, intramolecular rearrangement leading to a twisted charge-shift (CSh) S(1) state with localized character, and excited-state proton transfer (ESPT) to the solvent leading to the phenoxide-pyridinium zwitterion. The proton transfer kinetics depends on the proton accepting character of the solvent whereas the interring torsional kinetics depends on the solvent polarity and viscosity. In nitriles, ESPT does not occur and interring twisting arises with no significant intrinsic barrier, but still slower than solvation. The CSh state is notably fluorescent. In alcohols and water, ESPT is faster than the solvation and DE → CSh relaxation processes and yields the zwitterion hot ground state, which strongly quenches the fluorescence. In THF, solvation and interring twisting occur first, leading to the fully relaxed, weakly fluorescent CSh state, followed by slow ESPT towards the zwitterion. At low temperature (77 K), the large viscous barrier of the solvent inhibits the torsional relaxation but ESPT still arises to some extent. Strong emission from the DE geometry and planar zwitterion is thus observed. Finally, quantum chemical calculations were performed on the ground and excited state of model phenol-pyridinium and phenoxide-pyridinium compounds. Strong S(1) state energy stabilization is predicted upon twisting in both cases, consistent with a fast relaxation towards the perpendicular geometry. A substantial S(0)-S(1) energy gap is still present for the twisted cationic species, which can explain the long-lived emission of the CSh state in nitriles. A quite different situation arises with the zwitterion for which the S(0)-S(1) energy gap predicted at the twisted geometry is very small. This suggests a close-lying conical intersection and can account for the strong fluorescence quenching observed in solvents where the zwitterion is produced by ESPT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA