RESUMEN
Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.
Asunto(s)
Células Epiteliales , Receptores de Lipopolisacáridos , Lipopolisacáridos , Glándulas Mamarias Animales , Animales , Receptores de Lipopolisacáridos/metabolismo , Receptores de Lipopolisacáridos/genética , Bovinos , Células Epiteliales/metabolismo , Lipopolisacáridos/farmacología , Femenino , Glándulas Mamarias Animales/metabolismo , Mastitis Bovina/microbiología , Mastitis Bovina/inmunología , Mastitis Bovina/metabolismo , LecheRESUMEN
Motivation: Metagenomics leads to major advances in microbial ecology and biologists need user friendly tools to analyze their data on their own. Results: This Galaxy-supported pipeline, called FROGS, is designed to analyze large sets of amplicon sequences and produce abundance tables of Operational Taxonomic Units (OTUs) and their taxonomic affiliation. The clustering uses Swarm. The chimera removal uses VSEARCH, combined with original cross-sample validation. The taxonomic affiliation returns an innovative multi-affiliation output to highlight databases conflicts and uncertainties. Statistical results and numerous graphical illustrations are produced along the way to monitor the pipeline. FROGS was tested for the detection and quantification of OTUs on real and in silico datasets and proved to be rapid, robust and highly sensitive. It compares favorably with the widespread mothur, UPARSE and QIIME. Availability and implementation: Source code and instructions for installation: https://github.com/geraldinepascal/FROGS.git. A companion website: http://frogs.toulouse.inra.fr. Contact: geraldine.pascal@inra.fr. Supplementary information: Supplementary data are available at Bioinformatics online.
Asunto(s)
Metagenómica/métodos , Programas Informáticos , Bacterias/genética , Análisis por ConglomeradosRESUMEN
To investigate the dynamics of circRNA expression in pig testes, we designed specific strategies to individually study circRNA production from intron lariats and circRNAs originating from back-splicing of two exons. By applying these methods on seven Total-RNA-seq datasets sampled during the testicular puberty, we detected 126 introns in 114 genes able to produce circRNAs and 5,236 exonic circRNAs produced by 2,516 genes. Comparing our RNA-seq datasets to datasets from the literature (embryonic cortex and postnatal muscle stages) revealed highly abundant intronic and exonic circRNAs in one sample each in pubertal testis and embryonic cortex, respectively. This abundance was due to higher production of circRNA by the same genes in comparison to other testis samples, rather than to the recruitment of new genes. No global relationship between circRNA and mRNA production was found. We propose ExoCirc-9244 (SMARCA5) as a marker of a particular stage in testis, which is characterized by a very low plasma estradiol level and a high abundance of circRNA in testis. We hypothesize that the abundance of testicular circRNA is associated with an abrupt switch of the cellular process to overcome a particular challenge that may have arisen in the early stages of steroid production. We also hypothesize that, in certain circumstances, isoforms and circular transcripts from different genes share functions and that a global regulation of circRNA production is established. Our data indicate that this massive production of circRNAs is much more related to the structure of the genes generating circRNAs than to their function. Abbreviations: PE: Paired Ends; CR: chimeric Read; SR: Split Read; circRNA: circular RNA; NC: non conventional; ExoCirc-RNA: exonic circular RNA; IntroLCirc-: name of a porcine intronic lariat circRNA; ExoCirc-: name of a porcine exonic circRNA; IntronCircle-: name of a porcine intron circle; sisRNA: stable intronic sequence RNA; P: porcine breed Pietrain; LW: porcine breed Large White; RT: reverse transcription/reverse transcriptase; Total-RNA-seq: RNA-seq obtained from total RNA after ribosomal depletion; mRNA-seq: RNA-seq of poly(A) transcripts; TPM: transcripts per million; CR-PM: chimeric reads per million; RBP: RNA binding protein; miRNA: micro RNA; E2: estradiol; DHT: dihydrotestesterone.
Asunto(s)
Regulación de la Expresión Génica , ARN Circular/genética , Porcinos/genética , Transcriptoma/genética , Animales , Embrión de Mamíferos/metabolismo , Exones/genética , Intrones/genética , Masculino , Músculos/metabolismo , ARN Circular/metabolismo , Reproducibilidad de los Resultados , Porcinos/embriología , Testículo/metabolismoRESUMEN
Vaccination against bovine mastitis lags behind despite high demand from the dairy industry and margin for efficacy improvement. We previously compared two immunization protocols against E. coli using either only the intramuscular route or a combination of intramuscular and mammary ductal routes, also known as 'prime and pull' strategy. A homologous mammary challenge during the memory phase showed that immunization favorably modified the mastitis course, notably in locally immunized cows in comparison to intramuscular and control adjuvant-only groups. Here, we performed whole-blood profiling through RNA-seq transcriptome and plasma cytokine 15-plex analyses at time points of the E. coli mastitis that showed significant clinical and laboratory differences among the groups. Diminished production of inflammatory cytokines and increased IFNγ were detected in the blood of immunized cows, where a T lymphocyte activation profile was evidenced at 12-h post infection. Acute phase neutropenia was less severe in these cows, and pathways related to neutrophil diapedesis and monocyte activation were also present. Furthermore, three intramammary-immunized cows showing faster healing and shorter mastitis duration had gene profiles that differed from their counterparts, but without any clue for the mastitis susceptibility difference. Inasmuch, when gene expression of CD4 T cells was assessed in mammary tissue, enrichment of IL-17-associated pathways was identified in the quarters of intramammary-immunized cows not only after challenge but also in the control quarters that were not infected. These findings indicate that local immunization mobilizes protective mechanisms that rely on the settlement of type 3 immunity-related CD4 T cells prior to infection.
RESUMEN
Bovine coronavirus (BCoV) is widespread in cattle and wild ruminant populations throughout the world. The virus causes neonatal calf diarrhea and winter dysentery in adult cattle, as well as upper and lower respiratory tract infection in young cattle. We isolated and deep sequenced whole genomes of BCoV from calves with respiratory distress in the south-west of France and conducted a comparative genome analysis using globally collected BCoV sequences to provide insights into the genomic characteristics, evolutionary origins, and global diversity of BCoV. Molecular clock analyses allowed us to estimate that the BCoV ancestor emerged in the 1940s, and that two geographically distinct lineages diverged from the 1960s-1970s. A recombination event in the spike gene (breakpoint at nt 1100) may be at the origin of the genetic divergence sixty years ago. Little evidence of genetic mixing between the spatially segregated lineages was found, suggesting that BCoV genetic diversity is a result of a global transmission pathway that occurred during the last century. However, we found variation in evolution rates between the European and non-European lineages indicating differences in virus ecology.
Asunto(s)
Enfermedades de los Bovinos/epidemiología , Infecciones por Coronavirus/epidemiología , Coronavirus Bovino/genética , Enfermedades Gastrointestinales/epidemiología , Enfermedades Gastrointestinales/veterinaria , Infecciones del Sistema Respiratorio/epidemiología , Animales , Bovinos , Enfermedades de los Bovinos/transmisión , Infecciones por Coronavirus/transmisión , Coronavirus Bovino/patogenicidad , Evolución Molecular , Francia/epidemiología , Genoma Viral/genética , Geografía , Filogenia , Infecciones del Sistema Respiratorio/transmisión , Infecciones del Sistema Respiratorio/veterinaria , Selección Genética/genética , Tropismo Viral/genéticaRESUMEN
BACKGROUND: Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq) and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations. METHODOLOGY/PRINCIPAL FINDINGS: We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq). In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454). In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles. CONCLUSIONS/SIGNIFICANCE: We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of bacterial prevalence in host populations, and generation of intra-reservoir patterns of bacterial interactions. Lastly, the number of bacterial reads obtained with the 16S-MiSeq could be a good proxy for bacterial prevalence.