Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 136(1): 123-35, 2009 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-19135894

RESUMEN

The assembly of the Smad complex is critical for TGFbeta signaling, yet the mechanisms that inactivate or empower nuclear Smad complexes are less understood. By means of siRNA screen we identified FAM (USP9x), a deubiquitinase acting as essential and evolutionarily conserved component in TGFbeta and bone morphogenetic protein signaling. Smad4 is monoubiquitinated in lysine 519 in vivo, a modification that inhibits Smad4 by impeding association with phospho-Smad2. FAM reverts this negative modification, re-empowering Smad4 function. FAM opposes the activity of Ectodermin/Tif1gamma (Ecto), a nuclear factor for which we now clarify a prominent role as Smad4 monoubiquitin ligase. Our study points to Smad4 monoubiquitination and deubiquitination as a way for cells to set their TGFbeta responsiveness: loss of FAM disables Smad4-dependent responses in several model systems, with Ecto being epistatic to FAM. This defines a regulative ubiquitination step controlling Smads that is parallel to those impinging on R-Smad phosphorylation.


Asunto(s)
Proteína Smad4/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Embrión no Mamífero/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitinación , Xenopus
2.
Nature ; 564(7734): 114-118, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30487608

RESUMEN

The pancreas originates from two epithelial evaginations of the foregut, which consist of multipotent epithelial progenitors that organize into a complex tubular epithelial network. The trunk domain of each epithelial branch consists of bipotent pancreatic progenitors (bi-PPs) that give rise to both duct and endocrine lineages, whereas the tips give rise to acinar cells1. Here we identify the extrinsic and intrinsic signalling mechanisms that coordinate the fate-determining transcriptional events underlying these lineage decisions1,2. Single-cell analysis of pancreatic bipotent pancreatic progenitors derived from human embryonic stem cells reveal that cell confinement is a prerequisite for endocrine specification, whereas spreading drives the progenitors towards a ductal fate. Mechanistic studies identify the interaction of extracellular matrix (ECM) with integrin α5 as the extracellular cue that cell-autonomously, via the F-actin-YAP1-Notch mechanosignalling axis, controls the fate of bipotent pancreatic progenitors. Whereas ECM-integrin α5 signalling promotes differentiation towards the duct lineage, endocrinogenesis is stimulated when this signalling cascade is disrupted. This cascade can be disrupted pharmacologically or genetically to convert bipotent pancreatic progenitors derived from human embryonic stem cells to hormone-producing islet cells. Our findings identify the cell-extrinsic and intrinsic mechanotransduction pathway that acts as gatekeeper in the fate decisions of bipotent pancreatic progenitors in the developing pancreas.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Integrinas/metabolismo , Organogénesis , Páncreas/citología , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Linaje de la Célula/genética , Forma de la Célula , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos/genética , Femenino , Fibronectinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Integrina alfa5beta1/metabolismo , Masculino , Ratones , Proteínas Musculares/metabolismo , Páncreas/embriología , Páncreas/metabolismo , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptor Notch1/genética , Análisis de la Célula Individual , Factores de Transcripción de Dominio TEA , Factor de Transcripción HES-1/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Transgenes , Proteínas Señalizadoras YAP
3.
Development ; 141(3): 685-96, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449844

RESUMEN

Delamination plays a pivotal role during normal development and cancer. Previous work has demonstrated that delamination and epithelial cell movement within the plane of an epithelium are associated with a change in cellular phenotype. However, how this positional change is linked to differentiation remains unknown. Using the developing mouse pancreas as a model system, we show that ß cell delamination and differentiation are two independent events, which are controlled by Cdc42/N-WASP signaling. Specifically, we show that expression of constitutively active Cdc42 in ß cells inhibits ß cell delamination and differentiation. These processes are normally associated with junctional actin and cell-cell junction disassembly and the expression of fate-determining transcription factors, such as Isl1 and MafA. Mechanistically, we demonstrate that genetic ablation of N-WASP in ß cells expressing constitutively active Cdc42 partially restores both delamination and ß cell differentiation. These findings elucidate how junctional actin dynamics via Cdc42/N-WASP signaling cell-autonomously control not only epithelial delamination but also cell differentiation during mammalian organogenesis.


Asunto(s)
Actinas/metabolismo , Diferenciación Celular , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Transducción de Señal , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Animales Recién Nacidos , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Epitelio/metabolismo , Humanos , Hiperglucemia/metabolismo , Hiperglucemia/patología , Uniones Intercelulares/metabolismo , Uniones Intercelulares/patología , Ratones , Ratas , Imagen de Lapso de Tiempo
4.
Nature ; 449(7159): 183-8, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17728715

RESUMEN

MicroRNAs are crucial modulators of gene expression, yet their involvement as effectors of growth factor signalling is largely unknown. Ligands of the transforming growth factor-beta superfamily are essential for development and adult tissue homeostasis. In early Xenopus embryos, signalling by the transforming growth factor-beta ligand Nodal is crucial for the dorsal induction of the Spemann's organizer. Here we report that Xenopus laevis microRNAs miR-15 and miR-16 restrict the size of the organizer by targeting the Nodal type II receptor Acvr2a. Endogenous miR-15 and miR-16 are ventrally enriched as they are negatively regulated by the dorsal Wnt/beta-catenin pathway. These findings exemplify the relevance of microRNAs as regulators of early embryonic patterning acting at the crossroads of fundamental signalling cascades.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Xenopus laevis/embriología , Xenopus laevis/genética , Receptores de Activinas Tipo II/biosíntesis , Receptores de Activinas Tipo II/genética , Activinas/metabolismo , Animales , Tipificación del Cuerpo , MicroARNs/genética , Proteína Nodal , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Proteínas Wnt/metabolismo , Xenopus laevis/metabolismo , beta Catenina/metabolismo
5.
Nat Cell Biol ; 13(11): 1368-75, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21947082

RESUMEN

The TGFß pathway is critical for embryonic development and adult tissue homeostasis. On ligand stimulation, TGFß and BMP receptors phosphorylate receptor-activated SMADs (R-SMADs), which then associate with SMAD4 to form a transcriptional complex that regulates gene expression through specific DNA recognition. Several ubiquitin ligases serve as inhibitors of R-SMADs, yet no deubiquitylating enzyme (DUB) for these molecules has so far been identified. This has left unexplored the possibility that ubiquitylation of R-SMADs is reversible and engaged in regulating SMAD function, in addition to degradation. Here we identify USP15 as a DUB for R-SMADs. USP15 is required for TGFß and BMP responses in mammalian cells and Xenopus embryos. At the biochemical level, USP15 primarily opposes R-SMAD monoubiquitylation, which targets the DNA-binding domains of R-SMADs and prevents promoter recognition. As such, USP15 is critical for the occupancy of endogenous target promoters by the SMAD complex. These data identify an additional layer of control by which the ubiquitin system regulates TGFß biology.


Asunto(s)
Endopeptidasas/genética , Procesamiento Proteico-Postraduccional , Proteína smad3/metabolismo , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Proteína Morfogenética Ósea 2/metabolismo , ADN/metabolismo , Endopeptidasas/metabolismo , Células HCT116 , Células HEK293 , Humanos , Oocitos , Fosforilación , Regiones Promotoras Genéticas , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Proteína smad3/genética , Proteína Smad4/metabolismo , Factores de Tiempo , Transfección , Factor de Crecimiento Transformador beta1/metabolismo , Proteasas Ubiquitina-Específicas , Ubiquitinación , Xenopus
6.
Science ; 315(5813): 840-3, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17234915

RESUMEN

During development and tissue homeostasis, cells must integrate different signals. We investigated how cell behavior is controlled by the combined activity of transforming growth factor-beta (TGF-beta) and receptor tyrosine kinase (RTK) signaling, whose integration mechanism is unknown. We find that RTK/Ras/MAPK (mitogen-activated protein kinase) activity induces p53 N-terminal phosphorylation, enabling the interaction of p53 with the TGF-beta-activated Smads. This mechanism confines mesoderm specification in Xenopus embryos and promotes TGF-beta cytostasis in human cells. These data indicate a mechanism to allow extracellular cues to specify the TGF-beta gene-expression program.


Asunto(s)
Proliferación Celular , Embrión no Mamífero/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas ras/metabolismo , Sustitución de Aminoácidos , Animales , Caseína Cinasa 1 épsilon/metabolismo , Quinasa Idelta de la Caseína/metabolismo , Línea Celular Tumoral , Desarrollo Embrionario , Inducción Embrionaria , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/metabolismo , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Smad/metabolismo , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA