Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Nat Immunol ; 19(10): 1071-1082, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201994

RESUMEN

TLR3 is a sensor of double-stranded RNA that is indispensable for defense against infection with herpes simplex virus type 1 (HSV-1) in the brain. We found here that TLR3 was required for innate immune responses to HSV-1 in neurons and astrocytes. During infection with HSV-1, TLR3 recruited the metabolic checkpoint kinase complex mTORC2, which led to the induction of chemokines and trafficking of TLR3 to the cell periphery. Such trafficking enabled the activation of molecules (including mTORC1) required for the induction of type I interferons. Intracranial infection of mice with HSV-1 was exacerbated by impairment of TLR3 responses with an inhibitor of mTOR and was significantly 'rescued' by potentiation of TLR3 responses with an agonistic antibody to TLR3. These results suggest that the TLR3-mTORC2 axis might be a therapeutic target through which to combat herpes simplex encephalitis.


Asunto(s)
Encefalitis por Herpes Simple/inmunología , Diana Mecanicista del Complejo 2 de la Rapamicina/inmunología , Receptor Toll-Like 3/inmunología , Animales , Herpesvirus Humano 1 , Inmunidad Innata/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células 3T3 NIH
2.
J Neurosci ; 42(12): 2448-2473, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35121636

RESUMEN

Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1; also known as SPAR1) has been proposed to regulate synaptic functions that are important in maintaining normal neuronal activities, such as regulating spine growth and synaptic scaling, as a component of the PSD-95/NMDA-R-complex. However, its physiological role remains poorly understood. Here, we performed expression analyses using super-resolution microscopy (SRM) in mouse brain and demonstrated that SIPA1L1 is mainly localized to general submembranous regions in neurons, but surprisingly, not to PSD. Our screening for physiological interactors of SIPA1L1 in mouse brain identified spinophilin and neurabin-1, regulators of G-protein-coupled receptor (GPCR) signaling, but rejected PSD-95/NMDA-R-complex components. Furthermore, Sipa1l1-/- mice showed normal spine size distribution and NMDA-R-dependent synaptic plasticity. Nevertheless, Sipa1l1-/- mice showed aberrant responses to α2-adrenergic receptor (a spinophilin target) or adenosine A1 receptor (a neurabin-1 target) agonist stimulation, and striking behavioral anomalies, such as hyperactivity, enhanced anxiety, learning impairments, social interaction deficits, and enhanced epileptic seizure susceptibility. Male mice were used for all experiments. Our findings revealed unexpected properties of SIPA1L1, suggesting a possible association of SIPA1L1 deficiency with neuropsychiatric disorders related to dysregulated GPCR signaling, such as epilepsy, attention deficit hyperactivity disorder (ADHD), autism, or fragile X syndrome (FXS).SIGNIFICANCE STATEMENT Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1) is thought to regulate essential synaptic functions as a component of the PSD-95/NMDA-R-complex. In our screening for physiological SIPA1L1-interactors, we identified G-protein-coupled receptor (GPCR)-signaling regulators. Moreover, SIPA1L1 knock-out (KO) mice showed striking behavioral anomalies, which may be relevant to GPCR signaling. Our findings revealed an unexpected role of SIPA1L1, which may open new avenues for research on neuropsychiatric disorders that involve dysregulated GPCR signaling. Another important aspect of this paper is that we showed effective methods for checking PSD association and identifying native protein interactors that are difficult to solubilize. These results may serve as a caution for future claims about interacting proteins and PSD proteins, which could eventually save time and resources for researchers and avoid confusion in the field.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , N-Metilaspartato , Proteínas del Tejido Nervioso , Animales , Homólogo 4 de la Proteína Discs Large , Masculino , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptor de Adenosina A1 , Receptores Acoplados a Proteínas G/metabolismo
3.
Mol Psychiatry ; 27(3): 1694-1703, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34997193

RESUMEN

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.


Asunto(s)
Bombesina , Miedo , Amígdala del Cerebelo/metabolismo , Animales , Bombesina/metabolismo , Bombesina/farmacología , Condicionamiento Clásico/fisiología , Miedo/fisiología , Péptido Liberador de Gastrina/metabolismo , Péptido Liberador de Gastrina/farmacología , Mamíferos/metabolismo , Ratones , Ratones Noqueados
4.
J Neurochem ; 154(1): 25-40, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587290

RESUMEN

Vanishing white matter disease (VWM) is an autosomal recessive neurological disorder caused by mutation(s) in any subunit of eukaryotic translation initiation factor 2B (eIF2B), an activator of translation initiation factor eIF2. VWM occurs with mutation of the genes encoding eIF2B subunits (EIF2B1, EIF2B2, EIF2B3, EIF2B4, and EIF2B5). However, little is known regarding the underlying pathogenetic mechanisms or how to treat patients with VWM. Here we describe the identification and detailed analysis of a new spontaneous mutant mouse harboring a point mutation in the Eif2b5 gene (p.Ile98Met). Homozygous Eif2b5I98M mutant mice exhibited a small body, abnormal gait, male and female infertility, epileptic seizures, and a shortened lifespan. Biochemical analyses indicated that the mutant eIF2B protein with the Eif2b5I98M mutation decreased guanine nucleotide exchange activity on eIF2, and the level of the endoplasmic reticulum stress marker activating transcription factor 4 was elevated in the 1-month-old Eif2b5I98M brain. Histological analyses indicated up-regulated glial fibrillary acidic protein immunoreactivity in the astrocytes of the Eif2b5I98M forebrain and translocation of Bergmann glia in the Eif2b5I98M cerebellum, as well as increased mRNA expression of an endoplasmic reticulum stress marker, C/EBP homologous protein. Disruption of myelin and clustering of oligodendrocyte progenitor cells were also indicated in the white matter of the Eif2b5I98M spinal cord at 8 months old. Our data show that Eif2b5I98M mutants are a good model for understanding VWM pathogenesis and therapy development. Cover Image for this issue: doi: 10.1111/jnc.14751.


Asunto(s)
Modelos Animales de Enfermedad , Factor 2B Eucariótico de Iniciación/genética , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Neuroglía/patología , Animales , Encéfalo/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación Puntual
5.
Lab Invest ; 98(11): 1364-1374, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29967341

RESUMEN

Cadherin 11 (Cdh11), a member of the cadherin adhesion molecule family, is expressed in various regions of the brain as well as the head and ear. To gain further insights into the roles of Cdh11 in the development of the ear, we performed behavioral tests using Cdh11 knockout (KO) mice. KO mice showed reduced acoustic startle responses and increased thresholds for auditory brainstem responses, indicating moderate hearing loss. The auditory bulla volume and ratio of air-filled to non-air-filled space in the middle ear cavity were reduced in KO mice, potentially causing conductive hearing loss. Furthermore, residual mesenchymal and inflammatory cells were observed in the middle ear cavity of KO mice. Cdh11 was expressed in developing mesenchymal cells just before the start of cavitation, indicating that Cdh11 may be directly involved in middle ear cavitation. Since the auditory bulla is derived from the neural crest, the regulation of neural crest-derived cells by Cdh11 may be responsible for structural development. This mutant mouse may be a promising animal model for elucidating the causes of conductive hearing loss and otitis media.


Asunto(s)
Cadherinas/fisiología , Oído Medio/crecimiento & desarrollo , Audición , Animales , Femenino , Masculino , Ratones Noqueados
6.
Neurobiol Dis ; 106: 158-170, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28688852

RESUMEN

Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome. Here we report generation of the Cdkl5 knockout mouse and show that CDKL5 controls postsynaptic localization of GluN2B-containing N-methyl-d-aspartate (NMDA) receptors in the hippocampus and regulates seizure susceptibility. Cdkl5 -/Y mice showed normal sensitivity to kainic acid; however, they displayed significant hyperexcitability to NMDA. In concordance with this result, electrophysiological analysis in the hippocampal CA1 region disclosed an increased ratio of NMDA/α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-mediated excitatory postsynaptic currents (EPSCs) and a significantly larger decay time constant of NMDA receptor-mediated EPSCs (NMDA-EPSCs) as well as a stronger inhibition of the NMDA-EPSCs by the GluN2B-selective antagonist ifenprodil in Cdkl5 -/Y mice. Subcellular fractionation of the hippocampus from Cdkl5 -/Y mice revealed a significant increase of GluN2B and SAP102 in the PSD (postsynaptic density)-1T fraction, without changes in the S1 (post-nuclear) fraction or mRNA transcripts, indicating an intracellular distribution shift of these proteins to the PSD. Immunoelectron microscopic analysis of the hippocampal CA1 region further confirmed postsynaptic overaccumulation of GluN2B and SAP102 in Cdkl5 -/Y mice. Furthermore, ifenprodil abrogated the NMDA-induced hyperexcitability in Cdkl5 -/Y mice, suggesting that upregulation of GluN2B accounts for the enhanced seizure susceptibility. These data indicate that CDKL5 plays an important role in controlling postsynaptic localization of the GluN2B-SAP102 complex in the hippocampus and thereby regulates seizure susceptibility, and that aberrant NMDA receptor-mediated synaptic transmission underlies the pathological mechanisms of the CDKL5 loss-of-function.


Asunto(s)
Hipocampo/metabolismo , Densidad Postsináptica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/metabolismo , Animales , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Guanilato-Quinasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , N-Metilaspartato , Piperidinas/farmacología , Densidad Postsináptica/efectos de los fármacos , Densidad Postsináptica/patología , Proteínas Serina-Treonina Quinasas/genética , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Convulsiones/patología , Técnicas de Cultivo de Tejidos
7.
Eur J Neurosci ; 44(5): 2272-84, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27422015

RESUMEN

Synaptic efficacy is determined by various factors, including the quantal size, which is dependent on the amount of neurotransmitters in synaptic vesicles at the presynaptic terminal. It is essential for stable synaptic transmission that the quantal size is kept within a constant range and that synaptic efficacy during and after repetitive synaptic activation is maintained by replenishing release sites with synaptic vesicles. However, the mechanisms for these fundamental properties have still been undetermined. We found that the active zone protein CAST (cytomatrix at the active zone structural protein) played pivotal roles in both presynaptic regulation of quantal size and recycling of endocytosed synaptic vesicles. In the CA1 region of hippocampal slices of the CAST knockout mice, miniature excitatory synaptic responses were increased in size, and synaptic depression after prolonged synaptic activation was larger, which was attributable to selective impairment of synaptic vesicle trafficking via the endosome in the presynaptic terminal likely mediated by Rab6. Therefore, CAST serves as a key molecule that regulates dynamics and neurotransmitter contents of synaptic vesicles in the excitatory presynaptic terminal in the central nervous system.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Proteínas del Citoesqueleto/metabolismo , Endocitosis , Vesículas Sinápticas/metabolismo , Animales , Región CA1 Hipocampal/citología , Proteínas del Citoesqueleto/genética , Potenciales Postsinápticos Excitadores , Exocitosis , Ratones , Ratones Endogámicos C57BL , Potenciales Postsinápticos Miniatura , Terminales Presinápticos/metabolismo , Proteínas de Unión al GTP rab/metabolismo
8.
J Neurosci ; 34(17): 5927-37, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760852

RESUMEN

LMTK3 belongs to the LMTK family of protein kinases that are predominantly expressed in the brain. Physiological functions of LMTK3 and other members of the LMTK family in the CNS remain unknown. In this study, we performed a battery of behavioral analyses using Lmtk3(-/-) mice and showed that these mice exhibit abnormal behaviors, including pronounced locomotor hyperactivity, reduced anxiety behavior, and decreased depression-like behavior. Concurrently, the dopamine metabolite levels and dopamine turnover rate are increased in the striata of Lmtk3(-/-) mice compared with wild-type controls. In addition, using cultured primary neurons from Lmtk3(-/-) mice, we found that LMTK3 is involved in the endocytic trafficking of N-methyl-d-aspartate receptors, a type of ionotropic glutamate receptor. Altered membrane traffic of the receptor in Lmtk3(-/-) neurons may underlie behavioral abnormalities in the mutant animals. Together, our data suggest that LMTK3 plays an important role in regulating locomotor behavior in mice.


Asunto(s)
Conducta Animal/fisiología , Endocitosis/genética , Hipercinesia/genética , Proteínas de la Membrana/genética , Actividad Motora/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Ansiedad/genética , Ansiedad/metabolismo , Células Cultivadas , Cuerpo Estriado/metabolismo , Depresión/genética , Depresión/metabolismo , Dopamina/metabolismo , Hipercinesia/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Biol Chem ; 288(48): 34906-19, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24136198

RESUMEN

Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Exocitosis/genética , Plasticidad Neuronal/fisiología , Mutación Puntual/genética , Sintaxina 1/genética , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Proteínas de la Membrana/genética , Ratones , Plasticidad Neuronal/genética , Neuronas/metabolismo , Neuronas/fisiología , Mapas de Interacción de Proteínas , Transmisión Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo
10.
Eur J Neurosci ; 40(8): 3136-46, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25131300

RESUMEN

The N-methyl-D-aspartate receptor (NMDAR) plays various physiological and pathological roles in neural development, synaptic plasticity and neuronal cell death. It is composed of two GluN1 and two GluN2 subunits and, in the neonatal hippocampus, most synaptic NMDARs are GluN2B-containing receptors, which are gradually replaced with GluN2A-containing receptors during development. Here, we examined whether GluN2A could be substituted for GluN2B in neural development and functions by analysing knock-in (KI) mice in which GluN2B is replaced with GluN2A. The KI mutation was neonatally lethal, although GluN2A-containing receptors were transported to the postsynaptic membrane even without GluN2B and functional at synapses of acute hippocampal slices of postnatal day 0, indicating that GluN2A-containing NMDARs could not be substituted for GluN2B-containing NMDARs. Importantly, the synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluA1 was increased, and the transmembrane AMPAR regulatory protein, which is involved in AMPAR synaptic trafficking, was increased in KI mice. Although the regulation of AMPARs by GluN2B has been reported in cultured neurons, we showed here that AMPAR-mediated synaptic responses were increased in acute KI slices, suggesting differential roles of GluN2A and GluN2B in AMPAR expression and trafficking in vivo. Taken together, our results suggest that GluN2B is essential for the survival of animals, and that the GluN2B-GluN2A switching plays a critical role in synaptic integration of AMPARs through regulation of GluA1 in the whole animal.


Asunto(s)
Encéfalo/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Animales Recién Nacidos , Técnicas de Sustitución del Gen , Ratones , Transporte de Proteínas , Receptores de N-Metil-D-Aspartato/genética
11.
EMBO J ; 28(23): 3717-29, 2009 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-19834457

RESUMEN

Major depressive and bipolar disorders are serious illnesses that affect millions of people. Growing evidence implicates glutamate signalling in depression, though the molecular mechanism by which glutamate signalling regulates depression-related behaviour remains unknown. In this study, we provide evidence suggesting that tyrosine phosphorylation of the NMDA receptor, an ionotropic glutamate receptor, contributes to depression-related behaviour. The NR2A subunit of the NMDA receptor is tyrosine-phosphorylated, with Tyr 1325 as its one of the major phosphorylation site. We have generated mice expressing mutant NR2A with a Tyr-1325-Phe mutation to prevent the phosphorylation of this site in vivo. The homozygous knock-in mice show antidepressant-like behaviour in the tail suspension test and in the forced swim test. In the striatum of the knock-in mice, DARPP-32 phosphorylation at Thr 34, which is important for the regulation of depression-related behaviour, is increased. We also show that the Tyr 1325 phosphorylation site is required for Src-induced potentiation of the NMDA receptor channel in the striatum. These data argue that Tyr 1325 phosphorylation regulates NMDA receptor channel properties and the NMDA receptor-mediated downstream signalling to modulate depression-related behaviour.


Asunto(s)
Depresión/metabolismo , Depresión/fisiopatología , Receptores de N-Metil-D-Aspartato/fisiología , Tirosina/fisiología , Animales , Línea Celular , Depresión/genética , Depresión/psicología , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenilalanina/genética , Fosforilación/genética , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/genética , Tirosina/genética
13.
J Physiol ; 590(13): 3019-34, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22586220

RESUMEN

Activity-dependent regulation of calcium dynamics in neuronal cells can play significant roles in the modulation of many cellular processes such as intracellular signalling, neuronal activity and synaptic plasticity. Among many calcium influx pathways into neurons, the voltage-dependent calcium channel (VDCC) is the major source of calcium influx, but its modulation by synaptic activity has still been under debate. While the metabotropic glutamate receptor (mGluR) is supposed to modulate L-type VDCCs (L-VDCCs), its reported actions include both facilitation and suppression, probably reflecting the uncertainty of both the molecular targets of the mGluR agonists and the source of the recorded calcium signal in previous reports. In this study, using subtype-specific knockout mice, we have shown that mGluR5 induces facilitation of the depolarization-evoked calcium current. This facilitation was not accompanied by the change in single-channel properties of the VDCC itself; instead, it required the activation of calcium-induced calcium release (CICR) that was triggered by VDCC opening, suggesting that the opening of CICR-coupled cation channels was essential for the facilitation. This facilitation was blocked or reduced by the inhibitors of both L-VDCCs and InsP3 receptors (InsP3Rs). Furthermore, L-VDCCs and mGluR5 were shown to form a complex by coimmunoprecipitation, suggesting that the specific functional coupling between mGluR5, InsP3Rs and L-VDCCs played a pivotal role in the calcium-current facilitation. Finally, we showed that mGluR5 enhanced VDCC-dependent long-term potentiation (LTP) of synaptic transmission. Our study has identified a novel mechanism of the interaction between the mGluR and calcium signalling, and suggested a contribution of mGluR5 to synaptic plasticity.


Asunto(s)
Región CA1 Hipocampal/fisiología , Canales de Calcio Tipo L/fisiología , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Células Piramidales/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Animales , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor del Glutamato Metabotropico 5
14.
Mol Brain ; 15(1): 23, 2022 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279170

RESUMEN

Calsyntenins (CLSTNs) are important synaptic molecules whose molecular functions are not fully understood. Although mutations in calsyntenin (CLSTN) genes have been associated with psychiatric disorders in humans, their function is still unclear. One of the reasons why the function of CLSTNs in the nervous system has not been clarified is the functional redundancy among the three paralogs. Therefore, to investigate the functions of mammalian CLSTNs, we generated triple knockout (TKO) mice lacking all CLSTN paralogs and examined their behavior. The mutant mice tended to freeze in novel environments and exhibited hypersensitivity to stress. Consistent with this, glucose levels under stress were significantly higher in the mutant mice than in the wild-type controls. In particular, phenotypes such as decreased motivation, which had not been reported in single Clstn KO mice, were newly discovered. The TKO mice generated in this study represent an important mouse model for clarifying the function of CLSTN in the future.


Asunto(s)
Interneuronas , Proteínas de la Membrana , Animales , Humanos , Mamíferos , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fenotipo
15.
Eur J Neurosci ; 33(9): 1637-46, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21535245

RESUMEN

The hippocampus is essential for the formation of certain types of memory, and synaptic plasticity such as long-term potentiation (LTP) is widely accepted as a cellular basis of hippocampus-dependent memory. Although LTP in both perforant path-dentate gyrus (DG) granule cell and CA3-CA1 pyramidal cell synapses is similarly dependent on activation of postsynaptic N-methyl-D-aspartate receptors, several reports suggest that modulation of LTP by γ-aminobutyric acid (GABA) receptor-mediated inhibitory inputs is stronger in perforant path-DG granule cell synapses. However, little is known about how different the mechanism and physiological relevance of the GABAergic modulation of LTP induction are among different brain regions. We confirmed that the action of GABA(A) receptor antagonists on LTP was more prominent in the DG, and explored the mechanism introducing such difference by examining two types of GABA(A) receptor-mediated inhibition, i.e. synaptic and tonic inhibition. As synaptic inhibition, we compared inhibitory vs. excitatory monosynaptic responses and their summation during an LTP-inducing stimulus, and found that the balance of the summated postsynaptic currents was biased toward inhibition in the DG. As tonic inhibition, or sustained activation of extrasynaptic GABA(A) receptors by ambient GABA, we measured the change in holding currents of the postsynaptic cells induced by GABA(A) receptor antagonists, and found that the tonic inhibition was significantly stronger in the DG. Furthermore, we found that tonic inhibition was associated with LTP modulation. Our results suggest that both the larger tonic inhibition and the larger inhibitory/excitatory summation balance during conditioning are involved in the stronger inhibitory modulation of LTP in the DG.


Asunto(s)
Giro Dentado/fisiología , Potenciales Postsinápticos Inhibidores/fisiología , Potenciación a Largo Plazo/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/metabolismo , Masculino , Técnicas de Placa-Clamp , Picrotoxina/metabolismo , Subunidades de Proteína/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
16.
Proc Natl Acad Sci U S A ; 105(33): 11998-2003, 2008 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-18687898

RESUMEN

Presynaptic Ca(2+) stores have been suggested to regulate Ca(2+) dynamics within the nerve terminals at certain types of the synapse. However, little is known about their mode of activation, molecular identity, and detailed subcellular localization. Here, we show that the ryanodine-sensitive stores exist in axons and amplify presynaptic Ca(2+) accumulation at the hippocampal mossy fiber synapses, which display robust presynaptic forms of plasticity. Caffeine, a potent drug inducing Ca(2+) release from ryanodine-sensitive stores, causes elevation of presynaptic Ca(2+) levels and enhancement of transmitter release from the mossy fiber terminals. The blockers of ryanodine receptors, TMB-8 or ryanodine, reduce presynaptic Ca(2+) transients elicited by repetitive stimuli of mossy fibers but do not affect those evoked by single shocks, suggesting that ryanodine receptors amplify presynaptic Ca(2+) dynamics in an activity dependent manner. Furthermore, we generated the specific antibody against the type 2 ryanodine receptor (RyR2; originally referred to as the cardiac type) and examined the cellular and subcellular localization using immunohistochemistry. RyR2 is highly expressed in the stratum lucidum of the CA3 region and mostly colocalizes with axonal marker NF160 but not with terminal marker VGLUT1. Immunoelectron microscopy revealed that RyR2 is distributed around smooth ER within the mossy fibers but is almost excluded from their terminal portions. These results suggest that axonal localization of RyR2 at sites distant from the active zones enables use dependent Ca(2+) release from intracellular stores within the mossy fibers and thereby facilitates robust presynaptic forms of plasticity at the mossy fiber-CA3 synapse.


Asunto(s)
Axones/metabolismo , Señalización del Calcio , Fibras Musgosas del Hipocampo/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sinapsis/metabolismo , Animales , Axones/ultraestructura , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Fibras Musgosas del Hipocampo/ultraestructura
17.
EMBO Mol Med ; 13(4): e12574, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33656268

RESUMEN

Genomic defects with large effect size can help elucidate unknown pathologic architecture of mental disorders. We previously reported on a patient with schizophrenia and a balanced translocation between chromosomes 4 and 13 and found that the breakpoint within chromosome 4 is located near the LDB2 gene. We show here that Ldb2 knockout (KO) mice displayed multiple deficits relevant to mental disorders. In particular, Ldb2 KO mice exhibited deficits in the fear-conditioning paradigm. Analysis of the amygdala suggested that dysregulation of synaptic activities controlled by the immediate early gene Arc is involved in the phenotypes. We show that LDB2 forms protein complexes with known transcription factors. Consistently, ChIP-seq analyses indicated that LDB2 binds to > 10,000 genomic sites in human neurospheres. We found that many of those sites, including the promoter region of ARC, are occupied by EGR transcription factors. Our previous study showed an association of the EGR family genes with schizophrenia. Collectively, the findings suggest that dysregulation in the gene expression controlled by the LDB2-EGR axis underlies a pathogenesis of subset of mental disorders.


Asunto(s)
Esquizofrenia , Animales , Miedo , Expresión Génica , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Esquizofrenia/genética , Factores de Transcripción/genética
18.
J Neurosci ; 29(36): 11153-60, 2009 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-19741122

RESUMEN

Modern theories on memory storage have mainly focused on Hebbian long-term potentiation (LTP), which requires coincident activation of presynaptic and postsynaptic neurons for its induction. In addition to Hebbian LTP, the roles of non-Hebbian plasticity have also been predicted by some neuronal network models. However, still only a few pieces of evidence have been presented for the presence of such plasticity. In this study, we show in mouse hippocampal slices that LTP can be induced by postsynaptic repetitive depolarization alone in the absence of presynaptic inputs. The induction was dependent on voltage-dependent calcium channels instead of NMDA receptors (NMDARs), whereas the expression mechanism was shared with conventional NMDAR-dependent LTP. During the potentiation, the amplitude of spontaneous EPSCs was increased, suggesting a novel neuron-wide nature of this form of LTP. Furthermore, we also successfully induced LTP with trains of action potentials, which supported the possible existence of depolarizing pulse-induced LTP in vivo. Based on these findings, we suggest a model in which neuron-wide LTP works in concert with synapse-specific Hebbian plasticity to help information processing in memory formation.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Potenciales Sinápticos/fisiología , Animales , Cobayas , Hipocampo/fisiología , Masculino , Memoria/fisiología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
19.
J Neurosci ; 29(23): 7607-18, 2009 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-19515929

RESUMEN

Ca2+/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) is an essential mediator of activity-dependent synaptic plasticity that possesses multiple protein functions. So far, the autophosphorylation site-mutant mice targeted at T286 and at T305/306 have demonstrated the importance of the autonomous activity and Ca2+/calmodulin-binding capacity of CaMKIIalpha, respectively, in the induction of long-term potentiation (LTP) and hippocampus-dependent learning. However, kinase activity of CaMKIIalpha, the most essential enzymatic function, has not been genetically dissected yet. Here, we generated a novel CaMKIIalpha knock-in mouse that completely lacks its kinase activity by introducing K42R mutation and examined the effects on hippocampal synaptic plasticity and behavioral learning. In homozygous CaMKIIalpha (K42R) mice, kinase activity was reduced to the same level as in CaMKIIalpha-null mice, whereas CaMKII protein expression was well preserved. Tetanic stimulation failed to induce not only LTP but also sustained dendritic spine enlargement, a structural basis for LTP, at the Schaffer collateral-CA1 synapse, whereas activity-dependent postsynaptic translocation of CaMKIIalpha was preserved. In addition, CaMKIIalpha (K42R) mice showed a severe impairment in inhibitory avoidance learning, a form of memory that is dependent on the hippocampus. These results demonstrate that kinase activity of CaMKIIalpha is a common critical gate controlling structural, functional, and behavioral expression of synaptic memory.


Asunto(s)
Reacción de Prevención/fisiología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Espinas Dendríticas/enzimología , Hipocampo/enzimología , Potenciación a Largo Plazo/fisiología , Neuronas/enzimología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Células Cultivadas , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Técnicas de Sustitución del Gen , Hipocampo/fisiología , Técnicas In Vitro , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Mutación Missense , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/enzimología , Sinapsis/fisiología
20.
Mol Brain ; 13(1): 146, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33172474

RESUMEN

Protrudin is a protein that resides in the membrane of the endoplasmic reticulum and is highly expressed in the nervous system. Although mutations in the human protrudin gene (ZFYVE27, also known as SPG33) give rise to hereditary spastic paraplegia (HSP), the physiological role of the encoded protein has been largely unclear. We therefore generated mice deficient in protrudin and subjected them to a battery of behavioral tests designed to examine their intermediate phenotypes. The protrudin-deficient mice were found to have a reduced body size and to manifest pleiotropic behavioral abnormalities, including hyperactivity, depression-like behavior, and deficits in attention and fear-conditioning memory. They exhibited no signs of HSP, however, consistent with the notion that HSP-associated mutations of protrudin may elicit neural degeneration, not as a result of a loss of function, but rather as a result of a gain of toxic function. Overall, our results suggest that protrudin might play an indispensable role in normal neuronal development and behavior.


Asunto(s)
Atención/fisiología , Conducta Animal , Condicionamiento Clásico , Señales (Psicología) , Depresión/fisiopatología , Miedo/fisiología , Proteínas de Transporte Vesicular/deficiencia , Animales , Ansiedad/complicaciones , Ansiedad/fisiopatología , Depresión/complicaciones , Fenómenos Electrofisiológicos , Marcación de Gen , Hipocampo/fisiopatología , Memoria a Corto Plazo , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Fenotipo , Reflejo de Sobresalto , Interacción Social , Proteínas de Transporte Vesicular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA