Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 511(7510): 449-51, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25056062

RESUMEN

Magnetic devices are a leading contender for the implementation of memory and logic technologies that are non-volatile, that can scale to high density and high speed, and that do not wear out. However, widespread application of magnetic memory and logic devices will require the development of efficient mechanisms for reorienting their magnetization using the least possible current and power. There has been considerable recent progress in this effort; in particular, it has been discovered that spin-orbit interactions in heavy-metal/ferromagnet bilayers can produce strong current-driven torques on the magnetic layer, via the spin Hall effect in the heavy metal or the Rashba-Edelstein effect in the ferromagnet. In the search for materials to provide even more efficient spin-orbit-induced torques, some proposals have suggested topological insulators, which possess a surface state in which the effects of spin-orbit coupling are maximal in the sense that an electron's spin orientation is fixed relative to its propagation direction. Here we report experiments showing that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topological surface state. We find that the strength of the torque per unit charge current density in Bi2Se3 is greater than for any source of spin-transfer torque measured so far, even for non-ideal topological insulator films in which the surface states coexist with bulk conduction. Our data suggest that topological insulators could enable very efficient electrical manipulation of magnetic materials at room temperature, for memory and logic applications.

2.
Phys Rev Lett ; 121(9): 097204, 2018 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-30230873

RESUMEN

We demonstrate that the nontrivial magnetic texture of antiferromagnetic Skyrmions (AFM Sks) promotes a nonvanishing topological spin Hall effect (TSHE) on the flowing electrons. This effect results in a substantial enhancement of the nonadiabatic torque and, hence, improves the Skyrmion mobility. This nonadiabatic torque increases when decreasing the Skyrmion size, and, therefore, scaling down results in a much higher torque efficiency. In clean AFM Sks, we find a significant boost of the TSHE close to the van Hove singularity. Interestingly, this effect is enhanced away from the band gap in the presence of nonmagnetic interstitial defects. Furthermore, unlike their ferromagnetic counterpart, the TSHE in AFM Sks increases with an increase in the disorder strength, thus opening promising avenues for materials engineering of this effect.

3.
Nat Mater ; 14(9): 871-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26288976

RESUMEN

In 1984, Bychkov and Rashba introduced a simple form of spin-orbit coupling to explain the peculiarities of electron spin resonance in two-dimensional semiconductors. Over the past 30 years, Rashba spin-orbit coupling has inspired a vast number of predictions, discoveries and innovative concepts far beyond semiconductors. The past decade has been particularly creative, with the realizations of manipulating spin orientation by moving electrons in space, controlling electron trajectories using spin as a steering wheel, and the discovery of new topological classes of materials. This progress has reinvigorated the interest of physicists and materials scientists in the development of inversion asymmetric structures, ranging from layered graphene-like materials to cold atoms. This Review discusses relevant recent and ongoing realizations of Rashba physics in condensed matter.

4.
Phys Rev Lett ; 117(3): 036601, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472125

RESUMEN

Planar spin transport in disordered ultrathin magnetic bilayers comprising a ferromagnet and a normal metal (typically used for spin pumping, spin Seebeck and spin-orbit torque experiments) is investigated theoretically. Using a tight-binding model that puts the extrinsic spin Hall effect and spin swapping on equal footing, we show that the nature of spin-orbit coupled transport dramatically depends on the ratio between the layer thickness d and the mean free path λ. While the spin Hall effect dominates in the diffusive limit (d≫λ), spin swapping dominates in the Knudsen regime (d≲λ). A remarkable consequence is that spin swapping induces a substantial fieldlike torque in the Knudsen regime.

5.
Phys Rev Lett ; 117(24): 247202, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-28009218

RESUMEN

Using relativistic first-principles calculations, we show that the chemical trend of the Dzyaloshinskii-Moriya interaction (DMI) in 3d-5d ultrathin films follows Hund's first rule with a tendency similar to their magnetic moments in either the unsupported 3d monolayers or 3d-5d interfaces. We demonstrate that, besides the spin-orbit coupling (SOC) effect in inversion asymmetric noncollinear magnetic systems, the driving force is the 3d orbital occupations and their spin-flip mixing processes with the spin-orbit active 5d states control directly the sign and magnitude of the DMI. The magnetic chirality changes are discussed in the light of the interplay between SOC, Hund's first rule, and the crystal-field splitting of d orbitals.

6.
Nat Commun ; 9(1): 3990, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30266960

RESUMEN

Spin-orbit torque has recently been intensively investigated for the purposes of manipulating the magnetization in magnetic nano-devices and understanding fundamental physics. Therefore, the search for novel materials or material combinations that exhibit a strong enough spin-torque effect has become one of the top priorities in this field of spintronics. Weyl semimetal, a new topological material that features open Fermi arc with strong spin-orbit coupling and spin-momentum locking effect, is naturally expected to exhibit an enhanced spin-torque effect in magnetic nano-devices. Here we observe a significantly enhanced spin conductivity, which is associated with the field-like torque at low temperatures. The enhancement is obtained in the b-axis WTe2/Py bilayers of nano-devices but not observed in the a-axis of WTe2/Py nano-devices, which can be ascribed to the enhanced spin accumulation by the spin-momentum locking effect of the Fermi arcs of the Weyl semimetal WTe2.

7.
J Biomed Mater Res A ; 103(2): 479-88, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24737706

RESUMEN

This study was conducted to develop novel ceramic bone substitute that resembles the autologous bone behavior when used as graft material. Solid-state reaction at 1100°C was performed to synthesize ß-tricalcium phosphate (ß-TCP) and biphasic calcium phosphate (BCP). The ceramics were further analyzed to characterize phase composition, microstructural properties, cytocompatability and then challenged to regenerate critical bone defects in the parietal bone of rabbits. X-ray diffraction analysis confirmed the production of ß-TCP and indicated the synthesis of novel BCP composed of ß-TCP and silicocarnotite (calcium phosphate silicate mineral). The cytocompatibility test with human osteoblast cell line revealed enhanced cell proliferation on the BCP ceramic. The novel BCP induced the filling of about 73% of the bone defect with a newly formed bone tissue and an almost complete degradation after 12 weeks of healing. This novel ceramic resembles the autologous bone properties of complete degradation and efficient enhancement of bone formation, making it promising as bone graft material.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Fosfatos de Calcio , Cerámica , Ensayo de Materiales , Osteoblastos/metabolismo , Compuestos de Silicona , Animales , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Línea Celular , Cerámica/química , Cerámica/farmacología , Femenino , Humanos , Osteoblastos/citología , Conejos , Compuestos de Silicona/química , Compuestos de Silicona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA