Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
New Phytol ; 235(5): 1822-1835, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35510810

RESUMEN

Chenopodium quinoa uses epidermal bladder cells (EBCs) to sequester excess salt. Each EBC complex consists of a leaf epidermal cell, a stalk cell, and the bladder. Under salt stress, sodium (Na+ ), chloride (Cl- ), potassium (K+ ) and various metabolites are shuttled from the leaf lamina to the bladders. Stalk cells operate as both a selectivity filter and a flux controller. In line with the nature of a transfer cell, advanced transmission electron tomography, electrophysiology, and fluorescent tracer flux studies revealed the stalk cell's polar organization and bladder-directed solute flow. RNA sequencing and cluster analysis revealed the gene expression profiles of the stalk cells. Among the stalk cell enriched genes, ion channels and carriers as well as sugar transporters were most pronounced. Based on their electrophysiological fingerprint and thermodynamic considerations, a model for stalk cell transcellular transport was derived.


Asunto(s)
Chenopodium quinoa , Tolerancia a la Sal , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Transporte Iónico , Iones/metabolismo , Potasio/metabolismo , Salinidad , Tolerancia a la Sal/fisiología , Plantas Tolerantes a la Sal/metabolismo , Sodio/metabolismo , Vejiga Urinaria/metabolismo
2.
J Exp Bot ; 73(1): 292-306, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34436573

RESUMEN

Significant variation in epidermal bladder cell (EBC) density and salt tolerance (ST) exists amongst quinoa accessions, suggesting that salt sequestration in EBCs is not the only mechanism conferring ST in this halophyte. In order to reveal other traits that may operate in tandem with salt sequestration in EBCs and whether these additional tolerance mechanisms acted mainly at the root or shoot level, two quinoa (Chenopodium quinoa) accessions with contrasting ST and EBC densities (Q30, low ST with high EBC density versus Q68, with high ST and low EBC density) were studied. The results indicate that responses in roots, rather than in shoots, contributed to the greater ST in the accession with low EBC density. In particular, the tolerant accession had improved root plasma membrane integrity and K+ retention in the mature root zone in response to salt. Furthermore, superior ST in the tolerant Q68 was associated with faster and root-specific H2O2 accumulation and reactive oxygen species-induced K+ and Ca2+ fluxes in the root apex within 30 min after NaCl application. This was found to be associated with the constitutive up-regulation of the membrane-localized receptor kinases regulatory protein FERONIA in the tolerant accession. Taken together, this study shows that differential root signalling events upon salt exposure are essential for the halophytic quinoa; the failure to do this limits quinoa adaptation to salinity, independently of salt sequestration in EBCs.


Asunto(s)
Chenopodium quinoa , Tolerancia a la Sal , Peróxido de Hidrógeno , Raíces de Plantas , Salinidad , Plantas Tolerantes a la Sal
3.
EMBO Rep ; 21(3): e50109, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32103598

RESUMEN

Plants play a more active role in shaping their environment than most climate models assume. Understanding their specific behavior could have profound impact on predicting future climate changes.


Asunto(s)
Cambio Climático , Plantas , Humanos , Inteligencia
4.
Nat Prod Rep ; 38(3): 444-469, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33300916

RESUMEN

Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed.


Asunto(s)
Iridoides/síntesis química , Olea/química , Aldehídos/síntesis química , Monoterpenos Ciclopentánicos/síntesis química , Glucósidos Iridoides/síntesis química , Glucósidos Iridoides/química , Aceite de Oliva/química , Fenoles/síntesis química , Alcohol Feniletílico/análogos & derivados , Alcohol Feniletílico/síntesis química
5.
Physiol Plant ; 173(4): 1392-1420, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33847396

RESUMEN

Soil salinity is among the major abiotic stresses that plants must cope with, mainly in arid and semiarid regions. The tolerance to high salinity is an important agronomic trait to sustain food production. Quinoa is a halophytic annual pseudo-cereal species with high nutritional value that can secrete salt out of young leaves in external non-glandular cells called epidermal bladder cells (EBC). Previous work showed high salt tolerance, but low EBC density was associated with an improved response in the early phases of salinity stress, mediated by tissue-tolerance traits mainly in roots. We compared the transcript profiling of two quinoa genotypes with contrasting salt tolerance patterning to identify the candidate genes involved in the differentially early response among genotypes. The transcriptome profiling, supported by in vitro physiological analyses, provided insights into the early-stage molecular mechanisms, both at the shoot and root level, based on the sensitive/tolerance traits. Results showed the presence of numerous differentially expressed genes among genotypes, tissues, and treatments, with genes involved in hormonal and stress response upregulated mainly in the sensitive genotype, suggesting that tolerance may be correlated to restricted changes in gene expression, at least after a short salt stress. These data, showing constitutive differences between the two genotypes, represent a solid basis for further studies to characterize the salt tolerance traits. Additionally, new information provided by this work might be useful for the development of plant breeding or genome engineering programs in quinoa.


Asunto(s)
Chenopodium quinoa , Chenopodium quinoa/genética , Regulación de la Expresión Génica de las Plantas , Genotipo , Salinidad , Estrés Salino , Tolerancia a la Sal/genética , Plantas Tolerantes a la Sal , Estrés Fisiológico/genética
6.
J Environ Manage ; 277: 111454, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33070021

RESUMEN

Phytotechnological approaches using living plants are currently being proposed to address a wide range of environmental purposes including the treatment of landfill leachate (LL). Despite their popularity, few studies have investigated this possibility under actual Mediterranean conditions using fast-growing trees. This research reports the results of a two-year project where poplar and willow grown in mesocosm were tested for their ability to withstand and remove specific pollutants from different [Low: 7% (1st year) and 15% (2nd year); High: 15% (1st year) and 30% (2nd year)] amounts of LL. Results indicate that both species were able to treat 340 (Low) and 680 (High) m3 ha-1 in the establishment year (70 days) and 2470 (Low) and 4950 (High) m3 ha-1 in the second year (150 days). Both species yielded the same aboveground biomass, but under high LL treatment, poplar performed better than willow. Poplar showed on average significantly higher extraction rates for Cd, Cu, P, and N than willow. Moreover, under high LL treatment, poplar also seemed more efficient than willow in decreasing the concentration of specific pollutants (BOD5, COD and As) in output effluent. However, with low LL loads both species were able to significantly reduce other compounds (i.e. NH4-N, Cu and Ni). By contrast, Cl, surfactants, and NO3-N, had a tendency to accumulate over time in the effluent and could still represent an actual constraint to large-scale application of the technique. The fate of such pollutants should be investigated with further research to better inform strategies used to manage low amounts of high-concentrated effluent.


Asunto(s)
Populus , Salix , Contaminantes Químicos del Agua , Biodegradación Ambiental , Clima
7.
Plant J ; 100(1): 55-67, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31148333

RESUMEN

Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.


Asunto(s)
Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Tolerancia a la Sal , Intercambiadores de Sodio-Hidrógeno/metabolismo , Sodio/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Genotipo , Hordeum/clasificación , Hordeum/genética , Transporte Iónico/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Salinidad , Homología de Secuencia de Aminoácido , Intercambiadores de Sodio-Hidrógeno/genética , Especificidad de la Especie , Estrés Fisiológico
8.
BMC Genomics ; 21(1): 90, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31996138

RESUMEN

BACKGROUND: Truffles are symbiotic fungi that develop underground in association with plant roots, forming ectomycorrhizae. They are primarily known for the organoleptic qualities of their hypogeous fruiting bodies. Primarily, Tuber magnatum Pico is a greatly appreciated truffle species mainly distributed in Italy and Balkans. Its price and features are mostly depending on its geographical origin. However, the genetic variation within T. magnatum has been only partially investigated as well as its adaptation to several environments. RESULTS: Here, we applied an integrated omic strategy to T. magnatum fruiting bodies collected during several seasons from three different areas located in the North, Center and South of Italy, with the aim to distinguish them according to molecular and biochemical traits and to verify the impact of several environments on these properties. With the proteomic approach based on two-dimensional electrophoresis (2-DE) followed by mass spectrometry, we were able to identify proteins specifically linked to the sample origin. We further associated the proteomic results to an RNA-seq profiling, which confirmed the possibility to differentiate samples according to their source and provided a basis for the detailed analysis of genes involved in sulfur metabolism. Finally, geographical specificities were associated with the set of volatile compounds produced by the fruiting bodies, as quantitatively and qualitatively determined through proton transfer reaction-mass spectrometry (PTR-MS) and gas-chromatography-mass spectrometry (GC-MS). In particular, a partial least squares-discriminant analysis (PLS-DA) model built from the latter data was able to return high confidence predictions of sample source. CONCLUSIONS: Results provide a characterization of white fruiting bodies by a wide range of different molecules, suggesting the role for specific compounds in the responses and adaptation to distinct environments.


Asunto(s)
Adaptación Biológica , Ambiente , Genómica , Metabolómica , Proteómica , Saccharomycetales/genética , Saccharomycetales/metabolismo , Biología Computacional , Electroforesis en Gel Bidimensional , Cromatografía de Gases y Espectrometría de Masas , Genómica/métodos , Metabolómica/métodos , Proteómica/métodos , Transcriptoma , Compuestos Orgánicos Volátiles
9.
J Exp Bot ; 70(2): 691-700, 2019 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-30380091

RESUMEN

Plants activate defense-related pathways in response to subtle abiotic or biotic disturbances, changing their volatile profile rapidly. How such perturbations reach and potentially affect neighboring plants is less understood. We evaluated whether brief and light touching had a cascade effect on the profile of volatiles and gene expression of the focal plant and a neighboring untouched plant. Within minutes after contact, Zea mays showed an up-regulation of certain defense genes and increased the emission of specific volatiles that primed neighboring plants, making them less attractive for aphids. Exposure to volatiles from touched plants activated many of the same defense-related genes in non-touched neighboring plants, demonstrating a transcriptional mirroring effect for expression of genes up-regulated by brief contact. Perception of so-far-overlooked touch-induced volatile organic compounds was of ecological significance as these volatiles are directly involved in plant-plant communication as an effective trigger for rapid defense synchronization among nearby plants. Our findings shed new light on mechanisms of plant responses to mechanical contact at the molecular level and on the ecological role of induced volatiles as airborne signals in plant-plant interactions.


Asunto(s)
Compuestos Orgánicos Volátiles/metabolismo , Zea mays/metabolismo , Animales , Áfidos , Comunicación , Expresión Génica , Herbivoria , Tacto
10.
Plant Cell ; 28(4): 930-48, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-27053424

RESUMEN

Plant growth and architecture is regulated by the polar distribution of the hormone auxin. Polarity and flexibility of this process is provided by constant cycling of auxin transporter vesicles along actin filaments, coordinated by a positive auxin-actin feedback loop. Both polar auxin transport and vesicle cycling are inhibited by synthetic auxin transport inhibitors, such as 1-N-naphthylphthalamic acid (NPA), counteracting the effect of auxin; however, underlying targets and mechanisms are unclear. Using NMR, we map the NPA binding surface on the Arabidopsis thaliana ABCB chaperone TWISTED DWARF1 (TWD1). We identify ACTIN7 as a relevant, although likely indirect, TWD1 interactor, and show TWD1-dependent regulation of actin filament organization and dynamics and that TWD1 is required for NPA-mediated actin cytoskeleton remodeling. The TWD1-ACTIN7 axis controls plasma membrane presence of efflux transporters, and as a consequence act7 and twd1 share developmental and physiological phenotypes indicative of defects in auxin transport. These can be phenocopied by NPA treatment or by chemical actin (de)stabilization. We provide evidence that TWD1 determines downstream locations of auxin efflux transporters by adjusting actin filament debundling and dynamizing processes and mediating NPA action on the latter. This function appears to be evolutionary conserved since TWD1 expression in budding yeast alters actin polarization and cell polarity and provides NPA sensitivity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Citoesqueleto de Actina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Unión a Tacrolimus/genética
11.
J Environ Manage ; 247: 688-697, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31279146

RESUMEN

At an Italian field test site the efficiency of phytoextraction of toxic trace elements (TEs) from the soil is determined by uptake capacity, bioavailability of TEs in the soil and biomass yield of the plants involved. Altering the quantity and type of biomass produced, especially among fast-growing trees, may be one method of increasing phytoextraction efficiency. In poplar bark and wood show different TE concentration. Poplar also shows changing proportions of bark and wood with increasing diameter at breast height (DBH). Though it is often thought that the amount of TE accumulated in the biomass increases with the size of the plant, in the current study we show that this is only partially true. In fact while Zn is highly accumulated by the largest (60 mm DBH) poplar plants, Cd, Cu, and Ni were more concentrated in slightly smaller plants (50 mm DBH), and Pb in even smaller (40 mm DBH). These findings could open new strategies for managing a poplar phytoextraction stand in terms of coppicing techniques and planting cycles in order to address specific targeted TEs and enhance the overall performance of this green technology.


Asunto(s)
Metales Pesados , Populus , Contaminantes del Suelo , Oligoelementos , Biodegradación Ambiental , Suelo
12.
Development ; 142(4): 712-21, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25617431

RESUMEN

Cyclophilin A is a conserved peptidyl-prolyl cis-trans isomerase (PPIase) best known as the cellular receptor of the immunosuppressant cyclosporine A. Despite significant effort, evidence of developmental functions of cyclophilin A in non-plant systems has remained obscure. Mutations in a tomato (Solanum lycopersicum) cyclophilin A ortholog, DIAGEOTROPICA (DGT), have been shown to abolish the organogenesis of lateral roots; however, a mechanistic explanation of the phenotype is lacking. Here, we show that the dgt mutant lacks auxin maxima relevant to priming and specification of lateral root founder cells. DGT is expressed in shoot and root, and localizes to both the nucleus and cytoplasm during lateral root organogenesis. Mutation of ENTIRE/IAA9, a member of the auxin-responsive Aux/IAA protein family of transcriptional repressors, partially restores the inability of dgt to initiate lateral root primordia but not the primordia outgrowth. By comparison, grafting of a wild-type scion restores the process of lateral root formation, consistent with participation of a mobile signal. Antibodies do not detect movement of the DGT protein into the dgt rootstock; however, experiments with radiolabeled auxin and an auxin-specific microelectrode demonstrate abnormal auxin fluxes. Functional studies of DGT in heterologous yeast and tobacco-leaf auxin-transport systems demonstrate that DGT negatively regulates PIN-FORMED (PIN) auxin efflux transporters by affecting their plasma membrane localization. Studies in tomato support complex effects of the dgt mutation on PIN expression level, expression domain and plasma membrane localization. Our data demonstrate that DGT regulates auxin transport in lateral root formation.


Asunto(s)
Ciclofilina A/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Transporte Biológico , Ciclofilina A/genética , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Brotes de la Planta/genética
13.
J Exp Bot ; 69(16): 3987-4001, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29897491

RESUMEN

The progress in plant breeding for salinity stress tolerance is handicapped by the lack of understanding of the specificity of salt stress signalling and adaptation at the cellular and tissue levels. In this study, we used electrophysiological, fluorescence imaging, and real-time quantitative PCR tools to elucidate the essentiality of the cytosolic Na+ extrusion in functionally different root zones (elongation, meristem, and mature) in a large number of bread and durum wheat accessions. We show that the difference in the root's ability for vacuolar Na+ sequestration in the mature zone may explain differential salinity stress tolerance between salt-sensitive durum and salt-tolerant bread wheat species. Bread wheat genotypes also had on average 30% higher capacity for net Na+ efflux from the root elongation zone, providing the first direct evidence for the essentiality of the root salt exclusion trait at the cellular level. At the same time, cytosolic Na+ accumulation in the root meristem was significantly higher in bread wheat, leading to the suggestion that this tissue may harbour a putative salt sensor. This hypothesis was then tested by investigating patterns of Na+ distribution and the relative expression level of several key genes related to Na+ transport in leaves in plants with intact roots and in those in which the root meristems were removed. We show that tampering with this sensing mechanism has resulted in a salt-sensitive phenotype, largely due to compromising the plant's ability to sequester Na+ in mesophyll cell vacuoles. The implications of these findings for plant breeding for salinity stress tolerance are discussed.


Asunto(s)
Citosol/metabolismo , Raíces de Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Sodio/metabolismo , Triticum/metabolismo , Microscopía Confocal , Vacuolas/metabolismo
14.
Environ Res ; 164: 356-366, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29567421

RESUMEN

Phytoremediation is a green technique being increasingly used worldwide for various purposes including the treatment of municipal sewage sludge (MSS). Most plants proposed for this technique have high nutrient demands, and fertilization is often required to maintain soil fertility and nutrient balance while remediating the substrate. In this context, MSS could be a valuable source of nutrients (especially N and P) and water for plant growth. The aim of this study was to determine the capacity willow (Salix matsudana, cv Levante), poplar (Populus deltoides × Populus nigra, cv Orion), eucalyptus (Eucalyptus camaldulensis) and sunflower (Helianthus annuus) to clean MSS, which is slightly contaminated by trace elements (TEs) and organic pollutants, and to assess their physiological response to this medium. In particular, we aimed to evaluate the TE accumulation by different species as well as the decrease of TEs and organic pollutants in the sludge after one cropping cycle and the effect of MSS on plant growth and physiology. Since MSS did not show any detrimental effect on the biomass yield of any of the species tested, it was found to be a suitable growing medium for these species. TE phytoextraction rates depended on the species, with eucalyptus showing the highest accumulation for Cr, whereas sunflower exhibited the best performance for As, Cu and Zn. At the end of the trial, some TEs (i.e. Cr, Pb and Zn), n-alkanes and PCBs showed a significant concentration decrease in the sludge for all tested species. The highest Cr decrease was observed in pots with eucalyptus (57.4%) and sunflower (53.4%), whereas sunflower showed the highest Cu decrease (44.2%), followed by eucalyptus (41.2%), poplar (16.2%) and willow (14%). A significant decrease (41.1%) of Pb in the eucalyptus was observed. Zn showed a high decrease rate with sunflower (59.5%) and poplar (52%) and to a lesser degree with willow (35.3%) and eucalyptus (25.4%). The highest decrease in n-alkanes concentration in the sludge was found in willow (98.3%) and sunflower (97.3%), whereas eucalyptus has the lowest PCBs concentration (91.8%) in the sludge compared to the beginning of the trial. These results suggest new strategies (e.g. crop rotation and intercropping) to be adopted for a better management of this phytotechnology.


Asunto(s)
Biodegradación Ambiental , Salix , Aguas del Alcantarillado , Contaminantes del Suelo , Oligoelementos , Suelo
15.
Planta ; 245(2): 459-465, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27990573

RESUMEN

MAIN CONCLUSION: Explicit proof for de novo origin of a rare post-illumination monoterpene burst and its consistency under low O 2 , shows interaction of photorespiration, photosynthesis, and isoprenoid biosynthesis during light-dark transitions. Quercus ilex L (holm oak) constitutively emits foliar monoterpenes in an isoprene-like fashion via the methyl erythritol phosphate (MEP) pathway located in chloroplasts. Isoprene-emitting plants are known to exhibit post-illumination isoprene burst, a transient emission of isoprene in darkness. An analogous post-illumination monoterpene burst (PiMB) had remained elusive and is reported here for the first time in Q. ilex. Using 13CO2 labelling, we show that PiMB is made from freshly fixed carbon. PiMB is rare at ambient (20%) O2, absent at high (50%) O2, and becomes consistent in leaves exposed to low (2%) O2. PiMB is stronger and occurs earlier at higher temperatures. We also show that primary and secondary post-illumination CO 2 bursts (PiCO2B) are sensitive to O2 in Q. ilex. The primary photorespiratory PiCO2B is absent under both ambient and low O2, but is induced under high (>50%) O2, while the secondary PiCO2B (of unknown origin) is absent under ambient, but present at low and high O2. We propose that post-illumination recycling of photorespired CO2 competes with the MEP pathway for photosynthetic carbon and energy, making PiMB rare under ambient O2 and absent at high O2. PiMB becomes consistent when photorespiration is suppressed in Q. ilex.


Asunto(s)
Monoterpenos/metabolismo , Quercus/metabolismo , Butadienos/metabolismo , Dióxido de Carbono/metabolismo , Oscuridad , Hemiterpenos/metabolismo , Luz , Oxígeno/metabolismo , Pentanos/metabolismo , Hojas de la Planta/metabolismo
16.
Plant Physiol ; 172(4): 2445-2458, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27770060

RESUMEN

While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na+ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na+, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na+ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K+ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K+ retention ability are (1) an intrinsically lower H+-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.


Asunto(s)
Aclimatación , Hordeum/enzimología , Hordeum/fisiología , Raíces de Plantas/enzimología , Potasio/metabolismo , ATPasas de Translocación de Protón/metabolismo , Salinidad , Estrés Fisiológico , Aclimatación/efectos de los fármacos , Alantoína/farmacología , Cationes/metabolismo , Hordeum/efectos de los fármacos , Metaboloma/efectos de los fármacos , Metabolómica , Modelos Biológicos , Especificidad de Órganos/efectos de los fármacos , Epidermis de la Planta/citología , Epidermis de la Planta/efectos de los fármacos , Epidermis de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
17.
Ecology ; 98(6): 1693-1699, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28376291

RESUMEN

Anti-herbivore defense shows high levels of both inter- and intraspecific variability. Defending against herbivores may be costly to the plant when it requires a tradeoff in allocation between defense and other missed opportunities, such as reproduction. Indeed, the plastic expression of defensive traits allows the plant to invest resources in defense only when the risk of being damaged actually increases, avoiding wasted resources. Plants may assess risk by responding to volatile cues emitted by neighbors that are under attack. Most plastic responses likely depend on environmental conditions. In this experiment, we investigated the effect of water availability on resistance induced by volatile cues in sagebrush. We found that plants receiving additional water over summer and/or volatile cues from neighbor donor plants showed reduced herbivore damage compared to control plants. Interestingly, we found no evidence of interactions between additional water and volatile cues. We performed an inferential analysis comparing historical records of the levels of herbivore damage during different years that had different temperature and precipitation accumulations. Results confirmed findings from the experiment, as the regression model indicated that sagebrush was better defended during wetter and hotter seasons. Reports from the literature indicated that sagebrush is extremely sensitive to water availability in the soil. We suggest that water availability may directly affect resistance of herbivory as well as sensitivity to cues of damage. Costs and benefits of allocating resources to defensive traits may vary with environmental conditions.


Asunto(s)
Herbivoria , Plantas , Artemisia/fisiología , Estaciones del Año , Compuestos Orgánicos Volátiles/metabolismo
19.
J Food Sci Technol ; 54(6): 1368-1376, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28559595

RESUMEN

Olive oil samples were obtained from six cultivars grown in different environments, and graded by chemical analyses as extra virgin (EVOOs). These were evaluated for flavors and off-flavors, and relative VOCs spectrum as determined by PTR-ToF-MS. A hierarchical clustering of Panel test data separated olive oil in three groups, one including the samples with perceived off-flavor (VOOs), regardless of cultivar and environment. The Pearson's correlation coefficients between the mass data from PTR-ToF-MS and the sensory characteristics perceived by the Panel test were determined. A mass-to-sensory attributes correlation index was calculated. A color-coded card was built up based on the intensities (ncps) of five selected protonated mass data that was able to distinguish EVOOs from VOOs olive oil samples.

20.
EMBO J ; 31(13): 2965-80, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22549467

RESUMEN

Polar transport of the plant hormone auxin is controlled by PIN- and ABCB/PGP-efflux catalysts. PIN polarity is regulated by the AGC protein kinase, PINOID (PID), while ABCB activity was shown to be dependent on interaction with the FKBP42, TWISTED DWARF1 (TWD1). Using co-immunoprecipitation (co-IP) and shotgun LC-MS/MS analysis, we identified PID as a valid partner in the interaction with TWD1. In-vitro and yeast expression analyses indicated that PID specifically modulates ABCB1-mediated auxin efflux in an action that is dependent on its kinase activity and that is reverted by quercetin binding and thus inhibition of PID autophosphorylation. Triple ABCB1/PID/TWD1 co-transfection in tobacco revealed that PID enhances ABCB1-mediated auxin efflux but blocks ABCB1 in the presence of TWD1. Phospho-proteomic analyses identified S634 as a key residue of the regulatory ABCB1 linker and a very likely target of PID phosphorylation that determines both transporter drug binding and activity. In summary, we provide evidence that PID phosphorylation has a dual, counter-active impact on ABCB1 activity that is coordinated by TWD1-PID interaction.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Regulación de la Expresión Génica de las Plantas/fisiología , Fosfoproteínas/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica , Quercetina/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Nicotiana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA