Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Arch Microbiol ; 206(5): 206, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38575737

RESUMEN

Silkworms are an essential economic insect but are susceptible to diseases during rearing, leading to yearly losses in cocoon production. While chemical control is currently the primary method to reduce disease incidences, its frequent use can result in loss of susceptibility to pathogens and, ultimately, antibiotic resistance. To effectively prevent or control disease, growers must accurately, sensitively, and quickly detect causal pathogens to determine the best management strategies. Accurate recognition of diseased silkworms can prevent pathogen transmission and reduce cocoon loss. Different pathogen detection methods have been developed to achieve this objective, but they need more precision, specificity, consistency, and promptness and are generally unsuitable for in-situ analysis. Therefore, detecting silkworm diseases under rearing conditions is still an unsolved problem. As a consequence of this, there is an enormous interest in the development of biosensing systems for the early and precise identification of pathogens. There is also significant room for improvement in translating novel biosensor techniques to identify silkworm pathogens. This study explores the types of silkworm diseases, their symptoms, and their causal microorganisms. Moreover, we compare the traditional approaches used in silkworm disease diagnostics along with the latest sensing technologies, with a precise emphasis on lateral flow assay-based biosensors that can detect and manage silkworm pathogens.


Asunto(s)
Técnicas Biosensibles , Bombyx , Animales , Técnicas Biosensibles/métodos , Insectos , Manejo de la Enfermedad
2.
Foodborne Pathog Dis ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38563794

RESUMEN

The rapid emergence of antimicrobial resistance (AMR) in Campylobacter has reinforced its status as a foodborne pathogen of significant public health concern. Resistant Campylobacter is typically transferred to humans via the consumption of contaminated animal products, particularly poultry. The genes associated with antimicrobial resistance in Campylobacter spp. are poorly understood. To address this knowledge gap, we conducted a prevalence survey of AMR Campylobacter across 84 chicken farms in two districts of Bangladesh. Pooled cloacal swabs were collected from chickens and underwent bacteriological testing for Campylobacter spp. with PCR confirmation. Antimicrobial susceptibility was tested against 14 antibiotics by disk diffusion method, and 12 resistance genes were screened in Campylobacter-positive isolates using multiplex PCR. A total of 34 (40.5%) farms were Campylobacter-positive of which 73.5% of isolates were resistant to at least 10 antibiotics. The antimicrobial susceptibility results indicate a high level of resistance against streptomycin (97.1%), clindamycin (97.1%), ampicillin (94.1%), tetracycline (94.1%), erythromycin (91.2%), ciprofloxacin (88.2%), nalidixic acid (85.3%), and imipenem (82.4%), and comparatively a low frequency of resistance to chloramphenicol (47.1%), ceftazidime (44.1%), and colistin (35.3%). Multidrug-resistant (MDR) and extensively drug-resistant Campylobacter were identified in 97.1%, and 50% of isolates, respectively. Ten resistance genes were identified including blaTEM (in 97.1% of isolates), strA-strB (85.9%), tetA (70.6%), tetB (32.4%), qnrS (23.5%), blaCTX-M-1 (20.6%), qnrB (20.6%), blaSHV (8.8%), aadB (5.9%), and qnrA (2.9%). Our findings demonstrate that resistance to ampicillin, tetracycline, and ceftazidime in Campylobacter isolates was significantly (p ≤ 0.05) associated with the presence of blaTEM, tetA, and blaSHV genes, respectively. The high rates of AMR in Campylobacter isolates from our study are not surprising given the liberal use of antimicrobials and incomplete biosecurity provisions on farms. Of particular concern are resistance rates to those classes of antibiotics that should be reserved for human use (azithromycin, ciprofloxacin, and colistin). AMR was more prevalent in chicken farms that used multiple antibiotics, engaged in prophylactic treatment of the birds, and improperly disposed of antibiotic packages. The high prevalence of MDR in chicken-derived Campylobacter isolates from the different regions of our study reinforces the need for more prudent use of antimicrobial compounds in Bangladeshi chicken farms.

3.
J Fluoresc ; 33(6): 2229-2239, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37004622

RESUMEN

Inhomogeneity in single molecule electron transfer at the surface of lipid in a single vesicle has been explored by single molecule spectroscopic technique. In our study we took Di-methyl aniline (DMA), as the electron donor (D) and three different organic dyes as acceptor. These dyes are C153, C480 and C152 and they reside in different regions in the vesicle depending upon their preference of residence. For each probe, we found fluctuations in the single-molecule fluorescence decay, which are attributed to the variation in the reactivity of interfacial electron transfer. We found a non-exponential auto-correlation fluctuation of the intensity of the probe, which is ascribed to the kinetic disorder in the rate of electron transfer. We have also shown the power law distribution of the dark state (off time), which obeys the levy's statistics. We found a shift in lifetime distribution for the probe (C153) from 3.9 ns to 3.5 ns. This observed quenching is due to the dynamic electron transfer. We observed the kinetic disorderness in the electron transfer reaction for each dye. This source of fluctuation in electron transfer rate may be ascribed to the inherent fluctuation, occurring on the time scale of ~ 1.1 ms (for C153) of the vesicle, containing lipids.

4.
Cell Mol Life Sci ; 80(1): 1, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469134

RESUMEN

Emerging evidence illustrates that RhoC has divergent roles in cervical cancer progression where it controls epithelial to mesenchymal transition (EMT), migration, angiogenesis, invasion, tumor growth, and radiation response. Cancer stem cells (CSCs) are the primary cause of recurrence and metastasis and exhibit all of the above phenotypes. It, therefore, becomes imperative to understand if RhoC regulates CSCs in cervical cancer. In this study, cell lines and clinical specimen-based findings demonstrate that RhoC regulates tumor phenotypes such as clonogenicity and anoikis resistance. Accordingly, inhibition of RhoC abrogated these phenotypes. RNA-seq analysis revealed that RhoC over-expression resulted in up-regulation of 27% of the transcriptome. Further, the Infinium MethylationEPIC array showed that RhoC over-expressing cells had a demethylated genome. Studies divulged that RhoC via TET2 signaling regulated the demethylation of the genome. Further investigations comprising ChIP-seq, reporter assays, and mass spectrometry revealed that RhoC associates with WDR5 in the nucleus and regulates the expression of pluripotency genes such as Nanog. Interestingly, clinical specimen-based investigations revealed the existence of a subset of tumor cells marked by RhoC+/Nanog+ expression. Finally, combinatorial inhibition (in vitro) of RhoC and its partners (WDR5 and TET2) resulted in increased sensitization of clinical specimen-derived cells to radiation. These findings collectively reveal a novel role for nuclear RhoC in the epigenetic regulation of Nanog and identify RhoC as a regulator of CSCs. The study nominates RhoC and associated signaling pathways as therapeutic targets.


Asunto(s)
Dioxigenasas , Neoplasias del Cuello Uterino , Humanos , Femenino , Proteína rhoC de Unión a GTP/genética , Transición Epitelial-Mesenquimal/genética , Neoplasias del Cuello Uterino/genética , Epigénesis Genética , Células Madre Neoplásicas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Proliferación Celular , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión al ADN/metabolismo , Dioxigenasas/genética
5.
Curr Opin Colloid Interface Sci ; 51: 101413, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33390762

RESUMEN

Type I and type II pneumocytes are two forms of epithelial cells found lining the alveoli in the lungs. Type II pneumocytes exclusively secrete 'pulmonary surfactants,' a lipoprotein complex made up of 90% lipids (mainly phospholipids) and 10% surfactant proteins (SP-A, SP-B, SP-C, and SP-D). Respiratory diseases such as influenza, severe acute respiratory syndrome coronavirus infection, and severe acute respiratory syndrome coronavirus 2 infection are reported to preferentially attack type II pneumocytes of the lungs. After viral invasion, consequent viral propagation and destruction of type II pneumocytes causes altered surfactant production, resulting in dyspnea and acute respiratory distress syndrome in patients with coronavirus disease 2019. Exogenous animal-derived or synthetic pulmonary surfactant therapy has already shown immense success in the treatment of neonatal respiratory distress syndrome and has the potential to contribute efficiently toward repair of damaged alveoli and preventing severe acute respiratory syndrome coronavirus 2-associated respiratory failure. Furthermore, early detection of surfactant collectins (SP-A and SP-D) in the circulatory system can be a significant clinical marker for disease prognosis in the near future.

6.
Microb Cell Fact ; 20(1): 26, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509221

RESUMEN

Engine oil used in automobiles is a threat to soil and water due to the recalcitrant properties of its hydrocarbons. It pollutes surrounding environment which affects both flora and fauna. Microbes can degrade hydrocarbons containing engine oil and utilize it as a substrate for their growth. Our results demonstrated that cell-free broth of Bacillus velezensis KLP2016 (Gram + ve, endospore forming; Accession number KY214239) recorded an emulsification index (E24%) from 52.3% to 65.7% against different organic solvents, such as benzene, pentane, cyclohexane, xylene, n-hexane, toluene and engine oil. The surface tension of the cell-free broth of B. velezensis grown in Luria-Bertani broth at 35 °C decreased from 55 to 40 mN m-1at critical micelle concentration 17.2 µg/mL. The active biosurfactant molecule of cell-free broth of Bacillus velezensis KLP2016 was purified by Dietheylaminoethyl-cellulose and size exclusion chromatography, followed by HPLC (RT = 1.130), UV-vis spectrophotometry (210 nm) and thin layer chromatography (Rf = 0.90). The molecular weight of purified biosurfactant was found to be ~ 1.0 kDa, based on Electron Spray Ionization-MS. A concentration of 1980 × 10-2 parts per million of CO2 was trapped in a KOH solution after 15 days of incubation in Luria-Bertani broth containing 1% engine oil. Our results suggest that bacterium Bacillus velezensis KLP2016 may promise a new dimension to solving the engine oil pollution problem in near future.


Asunto(s)
Bacillus/metabolismo , Lipopéptidos/aislamiento & purificación , Contaminación por Petróleo , Tensoactivos/aislamiento & purificación , Bacillus/crecimiento & desarrollo , Biodegradación Ambiental , Dióxido de Carbono/química , Cromatografía en Gel , Emulsiones , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos/análisis , Micelas , Estándares de Referencia , Tensión Superficial
7.
Subcell Biochem ; 94: 297-322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32189305

RESUMEN

Sickle cell hemoglobin (HbS) is an example of a genetic variant of human hemoglobin where a point mutation in the ß globin gene results in substitution of glutamic acid to valine at sixth position of the ß globin chain. Association between tetrameric hemoglobin molecules through noncovalent interactions between side chain residue of ßVal6 and hydrophobic grooves formed by ßAla70, ßPhe85 and ßLeu88 amino acid residues of another tetramer followed by the precipitation of the elongated polymer leads to the formation of sickle-shaped RBCs in the deoxygenated state of HbS. There are multiple non-covalent interactions between residues across intra- and inter-strands that stabilize the polymer. The clinical phenotype of sickling of RBCs manifests as sickle cell anemia, which was first documented in the year 1910 in an African patient. Although the molecular reason of the disease has been understood well over the decades of research and several treatment procedures have been explored to date, an effective therapeutic strategy for sickle cell anemia has not been discovered yet. Surprisingly, it has been observed that the oxy form of HbS and glutathionylated form of deoxy HbS inhibits polymerization. In addition to describe the residue level interactions in the HbS polymer that provides its stability, here we explain the mechanism of inhibition in the polymerization of HbS in its oxy state. Additionally, we reported the molecular insights of inhibition in the polymerization for glutathionyl HbS, a posttranslational modification of hemoglobin, even in its deoxy state. In this chapter we briefly consider the available treatment procedures of sickle cell anemia and propose that the elevation of glutathionylation of HbS within RBCs, without inducing oxidative stress, might be an effective therapeutic strategy for sickle cell anemia.


Asunto(s)
Anemia de Células Falciformes/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/patología , Anemia de Células Falciformes/terapia , Eritrocitos/química , Eritrocitos/metabolismo , Eritrocitos/patología , Hemoglobinas/genética , Humanos , Polimerizacion
8.
Amino Acids ; 52(6-7): 893-904, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32468185

RESUMEN

Hemoglobinopathies are examples of autosomal recessive disorders of human hemoglobin. Hemoglobin E (HbE) and Hemoglobin D Punjab (HbD Punjab) are two of the most common hemoglobin variants geographically spread across Asian continent. These two variants differ from normal human hemoglobin (HbA) at a single amino acid residue caused by the point mutation of ß globin gene. The presence of the mutated amino acid residue causes perturbation in the function of both variants. However, the structure-function correlation of these variants has not been established yet. In the present study, we analyzed the conformational changes associated with oxygenation of hemoglobin variants using hydrogen/deuterium exchange-based mass spectrometry of backbone amide hydrogens of α and ß globin chains in the tetrameric hemoglobin molecule. We also performed the functional assay of these variants using oxygen dissociation equilibrium curve. Compared to HbA, both variants showed reduced oxygen affinity, as reported earlier. The functional perturbations exhibited by these variants were correlated well with their structural alterations with respect to the reported changes in the residue level interactions upon oxygenation of normal hemoglobin, monitored through the hydrogen/deuterium exchange kinetics of several peptic peptides originated from the isotopically exchanged oxy and deoxy forms of HbE and HbD Punjab.


Asunto(s)
Hemoglobina E/química , Hemoglobina E/genética , Hemoglobinas Anormales/química , Hemoglobinas Anormales/genética , Mutación Puntual/genética , Humanos , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio/métodos , Oxígeno/análisis , Oxihemoglobinas/análisis
9.
J Struct Biol ; 208(3): 107386, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31518635

RESUMEN

Glutathionylation is an example of reversible post-translation modification of proteins where free and accessible cysteine residues of proteins undergo thiol-disulfide exchange with oxidized glutathione (GSSG). In general, glutathionylation occurs under the condition of elevated oxidative stress in vivo. In human hemoglobin, Cys93 residue of ß globin chain was found to undergo this oxidative modification. Glutathionyl hemoglobin (GSHb) was reported to act as a biomarker of oxidative stress under several clinical conditions such as chronic renal failure, iron deficiency anemia, hyperlipidemia, diabetes mellitus, Friedreich's ataxia, atherosclerosis. Previously we showed that the functional abnormality associated with six-fold tighter oxygen binding of GSHb supposedly attributed to the conformational transition of the deoxy state of GSHb towards oxy hemoglobin like conformation. In the present study, we investigated the structural integrity and overall architecture of the quaternary structure of GSHb using native mass spectrometry and ion mobility mass spectrometry platforms. The dissociation equilibrium constants of both tetramer/dimer (Kd1) and dimer/monomer equilibrium (Kd2) was observed to increase by 1.91 folds and 3.64 folds respectively. However, the collision cross-section area of the tetrameric hemoglobin molecule remained unchanged upon glutathionylation. The molecular dynamics simulation data of normal human hemoglobin and GSHb was employed to support our experimental findings.


Asunto(s)
Glutatión/química , Hemoglobinas/química , Cisteína/química , Cisteína/metabolismo , Glutatión/metabolismo , Hemoglobinas/metabolismo , Humanos , Enlace de Hidrógeno , Espectrometría de Movilidad Iónica , Espectrometría de Masas/métodos , Simulación de Dinámica Molecular , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo
10.
Mol Microbiol ; 109(2): 169-191, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29669166

RESUMEN

The SoxXAYZB(CD)2 -mediated pathway of bacterial sulfur-chemolithotrophy explains the oxidation of thiosulfate, sulfide, sulfur and sulfite but not tetrathionate. Advenella kashmirensis, which oxidizes tetrathionate to sulfate, besides forming it as an intermediate during thiosulfate oxidation, possesses a soxCDYZAXOB operon. Knock-out mutations proved that only SoxBCD is involved in A. kashmirensis tetrathionate oxidation, whereas thiosulfate-to-tetrathionate conversion is Sox independent. Expression of two glutathione metabolism-related proteins increased under chemolithotrophic conditions, as compared to the chemoorganotrophic one. Substrate-dependent oxygen consumption pattern of whole cells, and sulfur-oxidizing enzyme activities of cell-free extracts, measured in the presence/absence of thiol inhibitors/glutathione, corroborated glutathione involvement in tetrathionate oxidation. Furthermore, proteome analyses detected a sulfite:acceptor oxidoreductase (SorAB) exclusively under chemolithotrophic conditions, while expression of a methanol dehydrogenase (XoxF) homolog, subsequently named thiol dehydrotransferase (ThdT), was found to increase 3- and 10-fold during thiosulfate-to-tetrathionate conversion and tetrathionate oxidation respectively. A thdT knock-out mutant did not oxidize tetrathionate but converted half of the supplied 40 mM S-thiosulfate to tetrathionate. Knock-out of another thiosulfate dehydrogenase (tsdA) gene proved that both ThdT and TsdA individually converted ∼ 20 mM S-thiosulfate to tetrathionate. The overexpressed and isolated ThdT protein exhibited PQQ-dependent thiosulfate dehydrogenation, whereas its PQQ-independent thiol transfer activity involving tetrathionate and glutathione potentially produced a glutathione:sulfodisulfane adduct and sulfite. SoxBCD and SorAB were hypothesized to oxidize the aforesaid adduct and sulfite respectively.

11.
Anal Biochem ; 573: 37-43, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30831097

RESUMEN

PURPOSE: Long-term glycemic index in patients with diabetes mellitus (DM) is measured by glycated hemoglobin (HbA1c) besides blood glucose. In DM, the primary amino groups of proteins get glycated via non-enzymatic post-translational modification. This study aims at identifying and characterizing site-specific glycation of erythrocyte proteome across varying glycemic index in patients with DM. EXPERIMENTS: We isolated the glycated erythrocyte proteome devoid of hemoglobin from control and diabetic samples using boronate affinity chromatography. Proteomic analysis was performed using nanoLC/ESI-MS proteomics platform. The site-specific modification on different proteins was deciphered using a customized database. RESULTS: We report 37 glycated proteins identified and characterized from samples with HbA1c of 6%, 8%, 12%, and 16%. Our results show that both extent and site-specific modification of proteins increased with increasing HbA1c. The observed residue-specific modifications of catalase, peroxiredoxin, carbonic anhydrase, lactate dehydrogenase B and delta-aminolevulinic acid dehydratase were correlated with the literature report on their functional disorder in DM. CONCLUSIONS: and clinical relevance: 37 glycated erythrocyte proteins apart from hemoglobin were characterized from DM patient samples with varying HbA1c values. We correlated the site-specific glycation and associated functional disorder of five representative proteins. However, the clinical correlation with the observed modifications needs further investigation.


Asunto(s)
Diabetes Mellitus Tipo 2/diagnóstico , Eritrocitos/metabolismo , Índice Glucémico , Proteoma/análisis , Proteómica/métodos , Cromatografía Líquida de Alta Presión , Hemoglobina Glucada/análisis , Glicosilación , Humanos , Espectrometría de Masas , Péptidos/análisis , Proteoma/metabolismo
12.
Anal Biochem ; 564-565: 108-115, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30367882

RESUMEN

Reduction of a disulfide linkage between cysteine residues in proteins, a standard step in the preanalytical preparation of samples in conventional proteomics approach, presents a challenge to characterize S-glutathionylation of proteins. S-glutathionylation of proteins has been reported in medical conditions associated with high oxidative stress. In the present study, we attempted to characterize glutathionylation of CSF proteins in patients with multiple sclerosis which is associated with high oxidative stress. Using the nano-LC/ESI-MS platform, we adopted a modified proteomics approach and a targeted database search to investigate glutathionylation at the residue level of CSF proteins. Compared to patients with Intracranial hypertension, the following CSF proteins: Extracellular Superoxide dismutase (ECSOD) at Cys195, α1-antitrypsin (A1AT) at Cys232, Phospholipid transfer protein (PLTP) at Cys318, Alpha-2-HS-glycoprotein at Cys340, Ectonucleotide pyrophosphate (ENPP-2) at Cys773, Gelsolin at Cys304, Interleukin-18 (IL-18) at Cys38 and Ig heavy chain V III region POM at Cys22 were found to be glutathionylated in patients with multiple sclerosis during a relapse. ECSOD, A1AT, and PLTP were observed to be glutathionylated at the functionally important cysteine residues. In conclusion, in the present study using a modified proteomics approach we have identified and characterized glutathionylation of CSF proteins in patients with multiple sclerosis.


Asunto(s)
Esclerosis Múltiple/metabolismo , Proteómica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Cromatografía Liquida , Glutatión/líquido cefalorraquídeo , Humanos , Esclerosis Múltiple/líquido cefalorraquídeo , Estrés Oxidativo/fisiología , Procesamiento Proteico-Postraduccional
13.
Indian J Med Res ; 149(4): 497-502, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31411173

RESUMEN

Background & objectives: Oxidative stress has been implicated in the pathophysiology of major depressive disorder (MDD), but biomarkers to assess oxidative stress in patients with MDD have yielded ambiguous results. Glutathionyl haemoglobin (GS-Hb) has been reported as a stable and potential biomarker for oxidative stress in various clinical conditions. The objective of the study was to evaluate GS-Hb as a potential biomarker of oxidative stress in patients with MDD through its quantification and to compare the levels of GS-Hb in age- and gender-matched healthy controls. Methods: The levels of GS-Hb were estimated using liquid chromatography coupled to electrospray ionization mass spectrometry in patients diagnosed with MDD and in a subset of patients after six weeks of treatment with selective serotonin reuptake inhibitors (SSRIs). Results: GS-Hb levels in drug-naïve patients with MDD (n=26) were significantly elevated compared to matched healthy controls (n=17). GS-Hb levels were not significantly different between MDD patients with and without co-morbid anxiety disorders. There were no significant differences in GS-Hb levels following six weeks of treatment with SSRIs compared to baseline. Interpretation & conclusions: Compared to controls, GS-Hb level in patients with MDD was significantly elevated, suggestive of increased oxidative stress associated with MDD. However, six weeks of antidepressant treatment was not sufficient to modify the alterations in antioxidant/oxidant system. Further studies need to be done with a large sample of MDD patients with a longer duration of antidepressant treatment.


Asunto(s)
Biomarcadores/sangre , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/tratamiento farmacológico , Glutatión/sangre , Adulto , Antidepresivos/administración & dosificación , Cromatografía Liquida , Trastorno Depresivo Mayor/patología , Femenino , Hemoglobinas , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/genética , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Espectrometría de Masa por Ionización de Electrospray
14.
Indian J Med Res ; 150(4): 365-375, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823918

RESUMEN

Background & objectives: The major limiting factor in the prevention of suicide is the limited knowledge on molecular insights in individuals at risk. Identification of peripheral protein markers which can classify individuals at high-risk of suicide might aid in early diagnosis and effective medical intervention. The aim of the present study was, therefore, to analyze the differential regulation of plasma proteins in individuals with deliberate self-harm compared to controls. Methods: Using two-dimensional gel electrophoresis coupled with matrix-assisted laser desorption-ionization mass spectrometry, differentially expressed plasma proteins were identified in study participants with deliberate self-harm compared to age- and gender-matched controls. The finding was validated using mass spectrometry-based isotope-labelled relative quantification and Western blot analysis in a new set of individuals with deliberate self-harm and controls. Results: The plasma proteomic analysis showed that apolipoprotein A-IV (Apo A-IV ) was downregulated by 2.63-fold (confidence interval: 1.52-4.54) in individuals with deliberate self-harm (n=10) compared to matched controls, which was consistent in mass spectrometry-based relative quantification and Western blot analysis performed in an independent set of individuals with deliberate self-harm (n=18). In addition, plasma levels of total cholesterol, esterified cholesterol and high-density lipoprotein (HDL) were observed to be significantly lower individuals with deliberate self-harm compared to controls. Interpretation & conclusions: Apo A-IV, which plays a crucial role in the esterification of free cholesterol, was found to be downregulated with concomitantly decreased levels of HDL, esterified cholesterol and total cholesterol in individuals with deliberate self-harm compared to matched controls. The present findings might provide a link between the differential regulation of plasma proteins and the previously reported results on altered cholesterol levels in individuals with deliberate self-harm.


Asunto(s)
Apolipoproteínas A/sangre , Colesterol/metabolismo , Conducta Autodestructiva/metabolismo , Adulto , Transporte Biológico , Regulación hacia Abajo , Femenino , Humanos , Masculino , Proteómica
15.
Biochem J ; 475(13): 2153-2166, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29858275

RESUMEN

In sickle cell anemia, polymerization of hemoglobin in its deoxy state leads to the formation of insoluble fibers that result in sickling of red blood cells. Stereo-specific binding of isopropyl group of ßVal6, the mutated amino-acid residue of a tetrameric sickle hemoglobin molecule (HbS), with hydrophobic groove of another HbS tetramer initiates the polymerization. Glutathionylation of ßCys93 in HbS was reported to inhibit the polymerization. However, the mechanism of inhibition in polymerization is unknown to date. In our study, the molecular insights of inhibition in polymerization were investigated by monitoring the conformational dynamics in solution phase using hydrogen/deuterium exchange-based mass spectrometry. The conformational rigidity imparted due to glutathionylation of HbS results in solvent shielding of ßVal6 and perturbation in the conformation of hydrophobic groove of HbS. Additionally, molecular dynamics simulation trajectory showed that the stereo-specific localization of glutathione moiety in the hydrophobic groove across the globin subunit interface of tetrameric HbS might contribute to inhibition in polymerization. These conformational insights in the inhibition of HbS polymerization upon glutathionylation might be translated in the molecularly targeted therapeutic approaches for sickle cell anemia.


Asunto(s)
Medición de Intercambio de Deuterio , Hemoglobina Falciforme/química , Espectrometría de Masas , Simulación de Dinámica Molecular , Multimerización de Proteína , Glutatión/química , Humanos
16.
Chembiochem ; 19(6): 633-640, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29316124

RESUMEN

Electrostatic attraction between α and ß globin chains holds the subunits together in a tetrameric human hemoglobin molecule (α2 ß2 ). Compared to normal globin chains, the affinity of a mutant chain to its partner globin might be different in genetic variants of hemoglobin. This leads to an unequal abundance of normal and variant hemoglobin in heterozygous samples, even though the rates of synthesis of both the normal and variant chains are the same. The aforementioned affinities across various globin chains might be assessed by quantification of the different forms of the tetramers present in a variant hemoglobin sample. In the present study, by exploiting mass differences between globin chains, differently populated hemoglobin tetramers present in hemoglobin (Hb) Beckman, a ß variant (ßA135D), were structurally characterized. The relative populations of dissymmetric tetramers (α2 ß2 , α2 ßßV , and α2 ßV2 ) indicated that both ß and ßV have different affinities towards the α globin chain. Conformational dynamics analyzed from hydrogen/deuterium exchange kinetics of the three peptide fragments of Hb Beckman in its oxy state displayed molecular insight into its functional abnormality. However, in comparison to normal hemoglobin (α2 ß2 ), the point mutation did not show any change in the collision cross-sections of the functionally active conformers of the variant hemoglobin molecules (α2 ßßV and α2 ßV2 ).


Asunto(s)
Hemoglobinas Anormales/química , Adulto , Cromatografía Liquida , Humanos , Cinética , Espectrometría de Masas , Conformación Proteica , Electricidad Estática
17.
Biochim Biophys Acta Proteins Proteom ; 1866(5-6): 668-679, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29630971

RESUMEN

Intrinsically disordered protein tau plays a central role in maintaining neuronal network by stabilizing microtubules in axon. Tau reportedly possesses random coil architecture, which is largely inert to alteration in solution conditions. However, the presence of transient compact conformers and residual structure has been evident from previous reports. Also, during Alzheimer's disease, misfolded tau detaches from microtubule and forms ordered filaments, which is the hallmark of the disease. Despite its fundamental role in neuronal physiology and in pathological cascade of several fatal neurodegenerative diseases, tau conformational dynamics remains poorly understood. In the present study, we have explored the effect of ionic strength, temperature and solvent polarity on tau40 conformational preferences using ion mobility mass spectrometry. Investigation of collision cross section revealed that while low ionic strength, elevated temperature and reduced solvent polarity mostly induced partial collapse in tau40 conformers, higher ionic strength led to an expansion of the molecule. Limited proteolysis identified segments of tau40 projection domain and proline-rich region having high order propensity and a C-terminal region having vulnerability for further expansion at altered solution conditions. The high susceptibility for disorder-to-order transition in the above region of the protein might have crucial implication on its role as microtubule spacers, and in cellular signaling cascade. The conformational adaptation of tau40 did not enhance the heparin-induced aggregation proclivity of the protein. Nevertheless, the observed correlation of electrostatic interaction with fibrillation propensity of tau40 might indicate plausible link between hyperphosphorylation at diseased state with tau conformation and self-assembly.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Agregado de Proteínas , Agregación Patológica de Proteínas , Solventes/química , Proteínas tau/química , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Concentración Osmolar , Conformación Proteica , Estabilidad Proteica , Proteolisis , Proteínas Recombinantes/química , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Temperatura , Proteínas tau/genética
18.
J Phys Chem A ; 122(36): 7181-7201, 2018 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-30152691

RESUMEN

Panchromatic absorbers that have robust photophysical properties enable new designs for molecular-based light-harvesting systems. Herein, we report experimental and theoretical studies of the spectral, redox, and excited-state properties of a series of perylene-monoimide-ethyne-porphyrin arrays wherein the number of perylene-monoimide units is stepped from one to four. In the arrays, a profound shift of absorption intensity from the strong violet-blue (B y and B x) bands of typical porphyrins into the green, red, and near-infrared (Q x and Q y) regions stems from mixing of chromophore and tetrapyrrole molecular orbitals (MOs), which gives multiplets of MOs having electron density spread over the entire array. This reduces the extensive mixing between porphyrin excited-state configurations and the transition-dipole addition and subtraction that normally leads to intense B and weak Q bands. Reduced configurational mixing derives from moderate effects of the ethyne and perylene on the MO energies and a more substantial effect of electron-density delocalization to reduce the configuration-interaction energy. Quantitative oscillator-strength analysis shows that porphyrin intensity is also shifted into the perylene-like green-region absorption and that the ethyne linkers lend absorption intensity. The reduced porphyrin configurational mixing also endows the S1 state with bacteriochlorin-like properties, including a 1-5 ns lifetime.

19.
Indian J Crit Care Med ; 22(5): 384-387, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29910555

RESUMEN

The year 2009-2010 saw H1N1 influenza outbreaks occurring in almost all countries of the world, causing the WHO to declare it a pandemic of an alert level of 6. In India, H1N1 influenza outbreaks were again reported in late 2014 and early 2015. Since then, sporadic cases of H1N1 influenza have been reported. H1N1 influenza usually presents itself with respiratory tract symptoms. In a minority of patients, abdominal symptoms may occur as well. Acute influenza-associated encephalopathy/encephalitis mostly occurs in the pediatric population, whereas in adults, it is a rare complication. The incidence of neurological complications appears to have increased after the 2009 H1N1 influenza A virus pandemic. We would like to draw attention to an adult patient case who initially presented with respiratory symptoms but then deteriorated and developed encephalitis, which is rarely reported. As per literature reviewed by Victoria Bangualid and Judith Berger on PubMed, only 21 cases of neurological complications were found in adult influenza A patients, out of whom 8 had encephalopathy.

20.
J Struct Biol ; 199(1): 76-83, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28465180

RESUMEN

Sickle hemoglobin (HbS) polymerization initiates in the deoxy state with the binding of hydrophobic patch formed by the isopropyl group of ßVal6 residue of a hemoglobin tetramer with the hydrophobic pocket of another tetramer, whose hydrophobic patch binds to the hydrophobic groove of a third molecule. Subsequent elongation of a single stranded polymer followed by the formation of a double strand and finally combination of seven such pairs of double strands results in a fourteen stranded fibrous polymer. Precipitation of this fiber inside the erythrocytes results in sickling of red blood cells. Surprisingly, the polymerization does not occur in the oxy state of HbS. Due to the unavailability of crystal structure of oxy form of HbS, the molecular basis of inhibition of polymerization in the oxy state is unknown to date. In the present study, we have attempted to understand the molecular mechanism of inhibition of polymerization by exploiting the exchange of backbone amide hydrogens of HbS with deuterated solvent. Hydrogen/deuterium exchange kinetics of peptide amide hydrogens of both oxy and deoxy form of HbS were monitored through ESI mass spectrometry. Upon oxygenation changes in the conformational flexibility across different regions of α and ß globin chains in the tetrameric HbS molecule were investigated. It was observed that oxygenation led to perturbation in the conformation of several residues around the hydrophobic patch, groove of a tetramer and axial, lateral contacts across the double strands that are involved in HbS polymerization.


Asunto(s)
Hemoglobina Falciforme/química , Espectrometría de Masas/métodos , Oxígeno/química , Polimerizacion , Recolección de Muestras de Sangre , Medición de Intercambio de Deuterio/métodos , Humanos , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA