Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 23(1): 79, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491359

RESUMEN

BACKGROUND: Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS: Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS: Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION: Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Variación Genética , Tanzanía , Proteína 1 de Superficie de Merozoito/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Genotipo , Repeticiones de Microsatélite , Antígenos de Protozoos/genética
2.
Malar J ; 23(1): 95, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582830

RESUMEN

BACKGROUND: The use of artemisinin-based combination therapy (ACT) is recommended by the World Health Organization for the treatment of uncomplicated falciparum malaria. Artemether-lumefantrine (AL) is the most widely adopted first-line ACT for uncomplicated malaria in sub-Saharan Africa (SSA), including mainland Tanzania, where it was introduced in December 2006. The WHO recommends regular assessment to monitor the efficacy of the first-line treatment specifically considering that artemisinin partial resistance was reported in Greater Mekong sub-region and has been confirmed in East Africa (Rwanda and Uganda). The main aim of this study was to assess the efficacy and safety of AL for the treatment of uncomplicated falciparum malaria in mainland Tanzania. METHODS: A single-arm prospective anti-malarial drug efficacy trial was conducted in Kibaha, Mlimba, Mkuzi, and Ujiji (in Pwani, Morogoro, Tanga, and Kigoma regions, respectively) in 2018. The sample size of 88 patients per site was determined based on WHO 2009 standard protocol. Participants were febrile patients (documented axillary temperature ≥ 37.5 °C and/or history of fever during the past 24 h) aged 6 months to 10 years. Patients received a 6-dose AL regimen by weight twice a day for 3 days. Clinical and parasitological parameters were monitored during 28 days of follow-up to evaluate the drug efficacy and safety. RESULTS: A total of 653 children were screened for uncomplicated malaria and 349 (53.7%) were enrolled between April and August 2018. Of the enrolled children, 345 (98.9%) completed the 28 days of follow-up or attained the treatment outcomes. There were no early treatment failures, but recurrent infections were higher in Mkuzi (35.2%) and Ujiji (23%). By Kaplan-Meier analysis of polymerase chain reaction (PCR) uncorrected adequate clinical and parasitological response (ACPR) ranged from 63.4% in Mkuzi to 85.9% in Mlimba, while PCR-corrected ACPR on day 28 varied from 97.6% in Ujiji to 100% in Mlimba. The drug was well tolerated; the commonly reported adverse events were cough, runny nose, and abdominal pain. No serious adverse event was reported. CONCLUSION: This study showed that AL had adequate efficacy and safety for the treatment of uncomplicated falciparum malaria. The high number of recurrent infections were mainly due to new infections, indicating the necessity of utilizing alternative artemisinin-based combinations, such as artesunate amodiaquine, which provide a significantly longer post-treatment prophylactic effect.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Niño , Humanos , Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Tanzanía , Reinfección/inducido químicamente , Reinfección/tratamiento farmacológico , Artemisininas/efectos adversos , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Amodiaquina/uso terapéutico , Malaria/tratamiento farmacológico , Fiebre/tratamiento farmacológico , Combinación de Medicamentos , Etanolaminas/efectos adversos , Plasmodium falciparum
3.
Malar J ; 23(1): 71, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461239

RESUMEN

BACKGROUND: Therapeutic efficacy studies (TESs) and detection of molecular markers of drug resistance are recommended by the World Health Organization (WHO) to monitor the efficacy of artemisinin-based combination therapy (ACT). This study assessed the trends of molecular markers of artemisinin resistance and/or reduced susceptibility to lumefantrine using samples collected in TES conducted in Mainland Tanzania from 2016 to 2021. METHODS: A total of 2,015 samples were collected during TES of artemether-lumefantrine at eight sentinel sites (in Kigoma, Mbeya, Morogoro, Mtwara, Mwanza, Pwani, Tabora, and Tanga regions) between 2016 and 2021. Photo-induced electron transfer polymerase chain reaction (PET-PCR) was used to confirm presence of malaria parasites before capillary sequencing, which targeted two genes: Plasmodium falciparum kelch 13 propeller domain (k13) and P. falciparum multidrug resistance 1 (pfmdr1). RESULTS: Sequencing success was ≥ 87.8%, and 1,724/1,769 (97.5%) k13 wild-type samples were detected. Thirty-seven (2.1%) samples had synonymous mutations and only eight (0.4%) had non-synonymous mutations in the k13 gene; seven of these were not validated by the WHO as molecular markers of resistance. One sample from Morogoro in 2020 had a k13 R622I mutation, which is a validated marker of artemisinin partial resistance. For pfmdr1, all except two samples carried N86 (wild-type), while mutations at Y184F increased from 33.9% in 2016 to about 60.5% in 2021, and only four samples (0.2%) had D1246Y mutations. pfmdr1 haplotypes were reported in 1,711 samples, with 985 (57.6%) NYD, 720 (42.1%) NFD, and six (0.4%) carrying minor haplotypes (three with NYY, 0.2%; YFD in two, 0.1%; and NFY in one sample, 0.1%). Between 2016 and 2021, NYD decreased from 66.1% to 45.2%, while NFD increased from 38.5% to 54.7%. CONCLUSION: This is the first report of the R622I (k13 validated mutation) in Tanzania. N86 and D1246 were nearly fixed, while increases in Y184F mutations and NFD haplotype were observed between 2016 and 2021. Despite the reports of artemisinin partial resistance in Rwanda and Uganda, this study did not report any other validated mutations in these study sites in Tanzania apart from R622I suggesting that intensified surveillance is urgently needed to monitor trends of drug resistance markers and their impact on the performance of ACT.


Asunto(s)
Antimaláricos , Artemisininas , Carubicina/análogos & derivados , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Plasmodium falciparum/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Tanzanía , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/epidemiología , Biomarcadores , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
4.
Malar J ; 22(1): 304, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817185

RESUMEN

BACKGROUND: Despite significant decline in the past two decades, malaria is still a major public health concern in Tanzania; with over 93% of the population still at risk. Community knowledge, attitudes and practices (KAP), and beliefs are key in enhancing uptake and utilization of malaria control interventions, but there is a lack of information on their contribution to effective control of the disease. This study was undertaken to determine KAP and beliefs of community members and service providers on malaria, and how they might be associated with increased risk and persistence of the disease burden in North-western and Southern regions of Tanzania. METHODS: This was an exploratory study that used qualitative methods including 16 in-depth interviews (IDI) and 32 focus group discussions (FGDs) to collect data from health service providers and community members, respectively. The study was conducted from September to October 2017 and covered 16 villages within eight districts from four regions of mainland Tanzania (Geita, Kigoma, Mtwara and Ruvuma) with persistently high malaria transmission for more than two decades. RESULTS: Most of the participants had good knowledge of malaria and how it is transmitted but some FGD participants did not know the actual cause of malaria, and thought that it is caused by bathing and drinking un-boiled water, or consuming contaminated food that has malaria parasites without warming it. Reported barriers to malaria prevention and control (by FGD and IDI participants) included shortage of qualified health workers, inefficient health financing, low care-seeking behaviour, consulting traditional healers, use of local herbs to treat malaria, poverty, increased breeding sites by socio-economic activities and misconceptions related to the use of bed nets and indoor residual spraying (IRS). Among the misconceptions, some participants believed that bed nets provided for free by the government came with bedbugs while others reported that free bed nets caused impotence among men. CONCLUSION: Despite good knowledge of malaria, several risk factors, such as socio-economic and behavioural issues, and misconceptions related to the use of bed nets and IRS were reported. Other key factors included unavailability or limited access to health services, poor health financing and economic activities that potentially contributed to persistence of malaria burden in these regions. Relevant policies and targeted malaria interventions, focusing on understanding socio-cultural factors, should be implemented to reduce and finally eliminate the disease in the study regions and others with persistent transmission.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Malaria , Masculino , Humanos , Tanzanía , Control de Mosquitos/métodos , Malaria/epidemiología , Factores de Riesgo
5.
Malar J ; 21(1): 92, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35300707

RESUMEN

BACKGROUND: To accelerate progress against malaria in high burden countries, a strategic reorientation of resources at the sub-national level is needed. This paper describes how mathematical modelling was used in mainland Tanzania to support the strategic revision that followed the mid-term review of the 2015-2020 national malaria strategic plan (NMSP) and the epidemiological risk stratification at the council level in 2018. METHODS: Intervention mixes, selected by the National Malaria Control Programme, were simulated for each malaria risk strata per council. Intervention mixes included combinations of insecticide-treated bed nets (ITN), indoor residual spraying, larval source management, and intermittent preventive therapies for school children (IPTsc). Effective case management was either based on estimates from the malaria indicator survey in 2016 or set to a hypothetical target of 85%. A previously calibrated mathematical model in OpenMalaria was used to compare intervention impact predictions for prevalence and incidence between 2016 and 2020, or 2022. RESULTS: For each malaria risk stratum four to ten intervention mixes were explored. In the low-risk and urban strata, the scenario without a ITN mass campaign in 2019, predicted high increase in prevalence by 2020 and 2022, while in the very-low strata the target prevalence of less than 1% was maintained at low pre-intervention transmission intensity and high case management. In the moderate and high strata, IPTsc in addition to existing vector control was predicted to reduce the incidence by an additional 15% and prevalence by 22%. In the high-risk strata, all interventions together reached a maximum reduction of 76%, with around 70% of that reduction attributable to high case management and ITNs. Overall, the simulated revised NMSP was predicted to achieve a slightly lower prevalence in 2020 compared to the 2015-2020 NMSP (5.3% vs 6.3%). CONCLUSION: Modelling supported the choice of intervention per malaria risk strata by providing impact comparisons of various alternative intervention mixes to address specific questions relevant to the country. The use of a council-calibrated model, that reproduces local malaria trends, represents a useful tool for compiling available evidence into a single analytical platform, that complement other evidence, to aid national programmes with decision-making processes.


Asunto(s)
Mosquiteros Tratados con Insecticida , Malaria , Niño , Humanos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Prevalencia , Tanzanía/epidemiología
6.
Malar J ; 21(1): 361, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36457087

RESUMEN

BACKGROUND: Malaria rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum histidine-rich protein 2 (HRP2) antigen are widely used for detection of active infection with this parasite and are the only practical malaria diagnostic test in some endemic settings. External validation of RDT results from field surveys can confirm appropriate RDT performance. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 enrolling participants of all ages in households from 15 villages in four border regions of Tanzania: Geita, Kigoma, Mtwara and Ruvuma. All participants had an RDT performed in the field and provided a blood sample for later laboratory multiplex antigen detection of HRP2. In assessing the continuous HRP2 levels in participant blood versus RDT result, dose-response logistic regression provided quantitative estimates for HRP2 limit of detection (LOD). RESULTS: From the 15 study villages, 6941 persons were enrolled that had a RDT at time of enrollment and provided a DBS for later laboratory antigen detection. RDT positive prevalence for the HRP2 band by village ranged from 20.0 to 43.6%, but the magnitude of this prevalence did not have an effect on the estimated LOD of RDTs utilized in different villages. Overall, HRP2 single-target tests had a lower LOD at the 95% probability of positive RDT (4.3 ng/mL; 95% CI 3.4-5.4) when compared to pLDH/HRP2 dual target tests (5.4 ng/mL; 4.5-6.3), though this difference was not significant. With the exception of one village, all other 14 villages (93.3%) showed RDT LOD estimates at 90% probability of positive RDT between 0.5 and 12.0 ng/mL. CONCLUSIONS: Both HRP2-only and pLDH/HRP2 combo RDTs utilized in a 2017 Tanzania cross-sectional survey of border regions generally performed well, and reliably detected HRP2 antigen in the low ng/mL range. Though single target tests had lower levels of HRP2 detection, both tests were within similar ranges among the 15 villages. Comparison of quantitative HRP2 detection limits among study sites can help interpret RDT testing results when generating population prevalence estimates for malaria infection.


Asunto(s)
Histidina , Malaria , Humanos , Pruebas Diagnósticas de Rutina , Estudios Transversales , Tanzanía/epidemiología
7.
Mol Ecol ; 30(1): 100-113, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33107096

RESUMEN

High-throughput Plasmodium genomic data is increasingly useful in assessing prevalence of clinically important mutations and malaria transmission patterns. Understanding parasite diversity is important for identification of specific human or parasite populations that can be targeted by control programmes, and to monitor the spread of mutations associated with drug resistance. An up-to-date understanding of regional parasite population dynamics is also critical to monitor the impact of control efforts. However, this data is largely absent from high-burden nations in Africa, and to date, no such analysis has been conducted for malaria parasites in Tanzania countrywide. To this end, over 1,000 P. falciparum clinical isolates were collected in 2017 from 13 sites in seven administrative regions across Tanzania, and parasites were genotyped at 1,800 variable positions genome-wide using molecular inversion probes. Population structure was detectable among Tanzanian P. falciparum parasites, approximately separating parasites from the northern and southern districts and identifying genetically admixed populations in the north. Isolates from nearby districts were more likely to be genetically related compared to parasites sampled from more distant districts. Known drug resistance mutations were seen at increased frequency in northern districts (including two infections carrying pfk13-R561H), and additional variants with undetermined significance for antimalarial resistance also varied by geography. Malaria Indicator Survey (2017) data corresponded with genetic findings, including average region-level complexity-of-infection and malaria prevalence estimates. The parasite populations identified here provide important information on extant spatial patterns of genetic diversity of Tanzanian parasites, to which future surveys of genetic relatedness can be compared.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/epidemiología , Sondas Moleculares , Plasmodium falciparum/genética , Tanzanía/epidemiología
8.
Malar J ; 20(1): 171, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33781261

RESUMEN

BACKGROUND: As insecticide-treated nets (ITNs) wear out and are disposed, some household members are prioritized to use remaining ITNs. This study assessed how nets are allocated within households to individuals of different age categories as ITNs are lost or damaged and as new ITNs are obtained. The study also explored how ITN allocation affects ITN durability. METHODS: A cross-sectional household survey and ITN durability study was conducted among 2,875 households across Tanzania to determine the proportion of nets that remain protective (serviceable) 22 months after net distribution aiming for universal coverage. Allocation of study nets within houses, and re-allocation of ITNs when new universal replacement campaign (URC) nets arrived in study households in Musoma District, was also assessed. RESULTS: Some 57.0% (95% CI 53.9-60.1%) of households had sufficient ITNs for every household member, while 84.4% (95% CI 82.4-86.4%) of the population had access to an ITN within their household (assuming 1 net covers every 2 members). In households with sufficient nets, 77.5% of members slept under ITNs. In households without sufficient nets, pregnant women (54.6%), children < 5 years (45.8%) and adults (42.1%) were prioritized, with fewer school-age children 5-14 years (35.9%), youths 15-24 years (28.1%) and seniors > 65 years (32.6%) sleeping under ITNs. Crowding ([Formula: see text] 3 people sleeping under nets) was twice as common among people residing in houses without sufficient nets for all age groups, apart from children < 5. Nets were less likely to be serviceable if: [Formula: see text] 3 people slept under them (OR 0.50 (95% CI 0.40-0.63)), or if nets were used by school-age children (OR 0.72 (95% CI 0.56-0.93)), or if the net product was Olyset®. One month after the URC, only 23.6% (95% CI 16.7-30.6%) of the population had access to a URC ITN in Musoma district. Householders in Musoma district continued the use of old ITNs even with the arrival of new URC nets. CONCLUSION: Users determined the useful life of ITNs and prioritized pregnant women and children < 5 to serviceable ITNs. When household net access declines, users adjust by crowding under remaining nets, which further reduces ITN lifespan. School-age children that commonly harbour gametocytes that mediate malaria transmission are compelled to sleep under unserviceable nets, crowd under nets or remain uncovered. However, they were accommodated by the arrival of new nets. More frequent ITN delivery through the school net programme in combination with mass distribution campaigns is essential to maximize ITN effectiveness.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , Propiedad/estadística & datos numéricos , Estudios Transversales , Composición Familiar , Mosquiteros Tratados con Insecticida/provisión & distribución , Control de Mosquitos/instrumentación , Tanzanía
9.
Malar J ; 19(1): 101, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32122342

RESUMEN

BACKGROUND: More than ever, it is crucial to make the best use of existing country data, and analytical tools for developing malaria control strategies as the heterogeneity in malaria risk within countries is increasing, and the available malaria control tools are expanding while large funding gaps exist. Global and local policymakers, as well as funders, increasingly recognize the value of mathematical modelling as a strategic tool to support decision making. This case study article describes the long-term use of modelling in close collaboration with the National Malaria Control Programme (NMCP) in Tanzania, the challenges encountered and lessons learned. CASE DESCRIPTION: In Tanzania, a recent rebound in prevalence led to the revision of the national malaria strategic plan with interventions targeted to the malaria risk at the sub-regional level. As part of the revision, a mathematical malaria modelling framework for setting specific predictions was developed and used between 2016 and 2019 to (1) reproduce setting specific historical malaria trends, and (2) to simulate in silico the impact of future interventions. Throughout the project, multiple stakeholder workshops were attended and the use of mathematical modelling interactively discussed. EVALUATION: In Tanzania, the model application created an interdisciplinary and multisectoral dialogue platform between modellers, NMCP and partners and contributed to the revision of the national malaria strategic plan by simulating strategies suggested by the NMCP. The uptake of the modelling outputs and sustained interest by the NMCP were critically associated with following factors: (1) effective sensitization to the NMCP, (2) regular and intense communication, (3) invitation for the modellers to participate in the strategic plan process, and (4) model application tailored to the local context. CONCLUSION: Empirical data analysis and its use for strategic thinking remain the cornerstone for evidence-based decision-making. Mathematical impact modelling can support the process both by unifying all stakeholders in one strategic process and by adding new key evidence required for optimized decision-making. However, without a long-standing partnership, it will be much more challenging to sensibilize programmes to the usefulness and sustained use of modelling and local resources within the programme or collaborating research institutions need to be mobilized.


Asunto(s)
Toma de Decisiones , Política de Salud , Malaria/prevención & control , Humanos , Modelos Teóricos , Tanzanía
10.
Malar J ; 19(1): 177, 2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32384923

RESUMEN

BACKGROUND: Recent malaria control efforts in mainland Tanzania have led to progressive changes in the prevalence of malaria infection in children, from 18.1% (2008) to 7.3% (2017). As the landscape of malaria transmission changes, a sub-national stratification becomes crucial for optimized cost-effective implementation of interventions. This paper describes the processes, data and outputs of the approach used to produce a simplified, pragmatic malaria risk stratification of 184 councils in mainland Tanzania. METHODS: Assemblies of annual parasite incidence and fever test positivity rate for the period 2016-2017 as well as confirmed malaria incidence and malaria positivity in pregnant women for the period 2015-2017 were obtained from routine district health information software. In addition, parasite prevalence in school children (PfPR5to16) were obtained from the two latest biennial council representative school malaria parasitaemia surveys, 2014-2015 and 2017. The PfPR5to16 served as a guide to set appropriate cut-offs for the other indicators. For each indicator, the maximum value from the past 3 years was used to allocate councils to one of four risk groups: very low (< 1%PfPR5to16), low (1- < 5%PfPR5to16), moderate (5- < 30%PfPR5to16) and high (≥ 30%PfPR5to16). Scores were assigned to each risk group per indicator per council and the total score was used to determine the overall risk strata of all councils. RESULTS: Out of 184 councils, 28 were in the very low stratum (12% of the population), 34 in the low stratum (28% of population), 49 in the moderate stratum (23% of population) and 73 in the high stratum (37% of population). Geographically, most of the councils in the low and very low strata were situated in the central corridor running from the north-east to south-west parts of the country, whilst the areas in the moderate to high strata were situated in the north-west and south-east regions. CONCLUSION: A stratification approach based on multiple routine and survey malaria information was developed. This pragmatic approach can be rapidly reproduced without the use of sophisticated statistical methods, hence, lies within the scope of national malaria programmes across Africa.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Malaria/transmisión , Masculino , Persona de Mediana Edad , Parasitemia/epidemiología , Embarazo , Prevalencia , Factores de Riesgo , Tanzanía/epidemiología , Adulto Joven
11.
Malar J ; 19(1): 391, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148255

RESUMEN

BACKGROUND: Histidine-rich protein 2 (HRP2)-based malaria rapid diagnostic tests (RDTs) are effective and widely used for the detection of wild-type Plasmodium falciparum infections. Although recent studies have reported false negative HRP2 RDT results due to pfhrp2 and pfhrp3 gene deletions in different countries, there is a paucity of data on the deletions of these genes in Tanzania. METHODS: A community-based cross-sectional survey was conducted between July and November 2017 in four regions: Geita, Kigoma, Mtwara and Ruvuma. All participants had microscopy and RDT performed in the field and provided a blood sample for laboratory multiplex antigen detection (for Plasmodium lactate dehydrogenase, aldolase, and P. falciparum HRP2). Samples showing RDT false negativity or aberrant relationship of HRP2 to pan-Plasmodium antigens were genotyped to detect the presence/absence of pfhrp2/3 genes. RESULTS: Of all samples screened by the multiplex antigen assay (n = 7543), 2417 (32.0%) were positive for any Plasmodium antigens while 5126 (68.0%) were negative for all antigens. The vast majority of the antigen positive samples contained HRP2 (2411, 99.8%), but 6 (0.2%) had only pLDH and/or aldolase without HRP2. Overall, 13 samples had an atypical relationship between a pan-Plasmodium antigen and HRP2, but were positive by PCR. An additional 16 samples with negative HRP2 RDT results but P. falciparum positive by microscopy were also chosen for pfhrp2/3 genotyping. The summation of false negative RDT results and laboratory antigen results provided 35 total samples with confirmed P. falciparum DNA for pfhrp2/3 genotyping. Of the 35 samples, 4 (11.4%) failed to consistently amplify positive control genes; pfmsp1 and pfmsp2 and were excluded from the analysis. The pfhrp2 and pfhrp3 genes were successfully amplified in the remaining 31 (88.6%) samples, confirming an absence of deletions in these genes. CONCLUSIONS: This study provides evidence that P. falciparum parasites in the study area have no deletions of both pfhrp2 and pfhrp3 genes. Although single gene deletions could have been missed by the multiplex antigen assay, the findings support the continued use of HRP2-based RDTs in Tanzania for routine malaria diagnosis. There is a need for the surveillance to monitor the status of pfhrp2 and/or pfhrp3 deletions in the future.


Asunto(s)
Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Eliminación de Gen , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adolescente , Adulto , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Prevalencia , Tanzanía , Adulto Joven
12.
Malar J ; 19(1): 105, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32131834

RESUMEN

BACKGROUND: Insecticide-treated nets (ITNs) are one of the most cost-effective measures for preventing malaria. The World Health Organization recommends both large-scale mass distribution campaigns and continuous distributions (CD) as part of a multifaceted strategy to achieve and sustain universal access to ITNs. A combination of these strategies has been effective for scaling up ITN access. For policy makers to make informed decisions on how to efficiently implement CD or combined strategies, information on the costs and cost-effectiveness of these delivery systems is necessary, but relatively few published studies of the cost continuous distribution systems exist. METHODS: To address the gap in continuous distribution cost data, four types of delivery systems-CD through antenatal care services (ANC) and the expanded programme on immunization (EPI) (Ghana, Mali, and mainland Tanzania), CD through schools (Ghana and mainland Tanzania), and a combined community/health facility-based distribution (Zanzibar, Tanzania), as well as mass distributions (Mali)-were costed. Data on costs were collected retrospectively from financial and operational records, stakeholder interviews, and resource use surveys. RESULTS: Overall, from a full provider perspective, mass distributions and continuous systems delivered ITNs at overlapping economic costs per net distributed (mass distributions: 4.37-4.61 USD, CD channels: 3.56-9.90 USD), with two of the school-based systems and the mass distributions at the lower end of this range. From the perspective of international donors, the costs of the CD systems were, for the most part, less costly than the mass distributions (mass distributions: 4.34-4.55 USD, Ghana and Tanzania 2017 school-based: 3.30-3.69 USD, health facility-based: 3.90-4.55 USD, combined community/health facility 4.55 USD). The 2015 school-based distribution (7.30 USD) and 2016 health facility-based distribution (6.52 USD) programmes in Tanzania were an exception. Mass distributions were more heavily financed by donors, while CD relied more extensively on domestic resource contributions. CONCLUSIONS: These results suggest that CD strategies can continue to deliver nets at a comparable cost to mass distributions, especially from the perspective of the donor.


Asunto(s)
Atención a la Salud/economía , Mosquiteros Tratados con Insecticida/economía , Malaria/prevención & control , Control de Mosquitos/economía , África del Sur del Sahara , Análisis Costo-Beneficio , Atención a la Salud/métodos , Femenino , Humanos , Mosquiteros Tratados con Insecticida/provisión & distribución , Control de Mosquitos/instrumentación , Embarazo , Mujeres Embarazadas , Salud Pública/economía , Estudios Retrospectivos , Encuestas y Cuestionarios
13.
Malar J ; 19(1): 158, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303240

RESUMEN

Most malaria-endemic countries have struggled in the past decade to establish effective national-scale continuous distribution mechanisms for long-lasting insecticidal nets (LLINs). Since the implementation of the Tanzania National Voucher Scheme in 2004 and mass-distribution campaigns in 2009-2011 and 2015-2016, Tanzania has been committed to finding new and innovative ways of achieving and maintaining universal bed net coverage. Planning for the School Net Programme (SNP) began in 2011 and in 2013, the country piloted a SNP in three regions. Nets were distributed annually to children attending schools in selected primary and secondary grades. Intra-family re-distribution was assumed, and hence the family as a whole, rather than just the children themselves, were the targeted beneficiaries. The programme has since expanded to 14 regions and has seen six rounds of annual distribution. In its fifth year, 3 million nets were distributed at a cost of USD 3.64 per net and USD 0.60 per person-year of protection (including the net). ITN access and use were maintained at a high level (~ 50-75%) over the first 4 years of distribution within selected evaluation areas, even in the absence of a mass distribution event. Net distribution through primary schools has proven to be a feasible and effective strategy for maintaining consistently high coverage in Tanzania.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/prevención & control , Control de Mosquitos/instrumentación , Control de Mosquitos/estadística & datos numéricos , Propiedad , Instituciones Académicas , Tanzanía
14.
Malar J ; 18(1): 370, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31752889

RESUMEN

BACKGROUND: With increasing spatial heterogeneity of malaria transmission and a shift of the disease burden towards older children and adults, pregnant women attending antenatal care (ANC) have been proposed as a pragmatic sentinel population for malaria surveillance. However, the representativeness of routine ANC malaria test-positivity and its relationship with prevalence in other population subgroups are yet to be investigated. METHODS: Monthly ANC malaria test-positivity data from all Tanzanian health facilities for January 2014 to May 2016 was compared to prevalence data from the School Malaria Parasitaemia Survey 2015, the Malaria Indicator Survey (MIS) 2015/16, the Malaria Atlas Project 2015, and a Bayesian model fitted to MIS data. Linear regression was used to describe the difference between malaria test-positivity in pregnant women and respective comparison groups as a function of ANC test-positivity and potential covariates. RESULTS: The relationship between ANC test-positivity and survey prevalence in children follows spatially and biologically meaningful patterns. However, the uncertainty of the relationship was substantial, particularly in areas with high or perennial transmission. In comparison, modelled data estimated higher prevalence in children at low transmission intensities and lower prevalence at higher transmission intensities. CONCLUSIONS: Pregnant women attending ANC are a pragmatic sentinel population to assess heterogeneity and trends in malaria prevalence in Tanzania. Yet, since ANC malaria test-positivity cannot be used to directly predict the prevalence in other population subgroups, complementary community-level measurements remain highly relevant.


Asunto(s)
Malaria/epidemiología , Vigilancia de la Población , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Prevalencia , Vigilancia de Guardia , Tanzanía/epidemiología , Adulto Joven
15.
Malar J ; 18(1): 99, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909922

RESUMEN

BACKGROUND: The Tanzanian National Malaria Control Programme (NMCP) and its partners have been implementing regular therapeutic efficacy studies (TES) to monitor the performance of different drugs used or with potential use in Tanzania. However, most of the recent TES focused on artemether-lumefantrine, which is the first-line anti-malarial for the treatment of uncomplicated falciparum malaria. Data on the performance of other artemisinin-based combinations is urgently needed to support timely review and changes of treatment guidelines in case of drug resistance to the current regimen. This study was conducted at two NMCP sentinel sites (Kibaha, Pwani and Ujiji, Kigoma) to assess the efficacy and safety of artesunate-amodiaquine (ASAQ) and dihydroartemisinin-piperaquine (DP), which are the current alternative artemisinin-based combinations in Tanzania. METHODS: This was a single-arm prospective evaluation of the clinical and parasitological responses of ASAQ and DP for directly observed treatment of uncomplicated falciparum malaria. Children aged 6 months to 10 years and meeting the inclusion criteria were enrolled and treated with either ASAQ or DP. In each site, patients were enrolled sequentially; thus, enrolment of patients for the assessment of one artemisinin-based combination was completed before patients were recruited for assessment of the second drugs. Follow-up was done for 28 or 42 days for ASAQ and DP, respectively. The primary outcome was PCR corrected cure rates while the secondary outcome was occurrence of adverse events (AEs) or serious adverse events (SAEs). RESULTS: Of the 724 patients screened at both sites, 333 (46.0%) were enrolled and 326 (97.9%) either completed the 28/42 days of follow-up, or attained any of the treatment outcomes. PCR uncorrected adequate clinical and parasitological response (ACPR) for DP on day 42 was 98.8% and 75.9% at Kibaha and Ujiji, respectively. After PCR correction, DP's ACPR was 100% at both sites. For ASAQ, no parasite recurrence occurred giving 100% ACPR on day 28. Only one patient in the DP arm (1.1%) from Ujiji had parasites on day 3. Of the patients recruited (n = 333), 175 (52.6%) had AEs with 223 episodes (at both sites) in the two treatment groups. There was no SAE and the commonly reported AE episodes (with > 5%) included, cough, running nose, abdominal pain, diarrhoea and fever. CONCLUSION: Both artemisinin-based combinations had high cure rates with PCR corrected ACPR of 100%. The two drugs had adequate safety with no SAE and all AEs were mild, and not associated with the anti-malarials. Continued TES is critical to monitor the performance of nationally recommended artemisinin-based combination therapy and supporting evidence-based review of malaria treatment policies. Trial registration This study is registered at ClinicalTrials.gov, No. NCT03431714.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Quinolinas/uso terapéutico , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Tanzanía
16.
Malar J ; 18(1): 88, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30898164

RESUMEN

BACKGROUND: The World Health Organization recommends regular therapeutic efficacy studies (TES) to monitor the performance of first and second-line anti-malarials. In 2016, efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria were assessed through a TES conducted between April and October 2016 at four sentinel sites of Kibaha, Mkuzi, Mlimba, and Ujiji in Tanzania. The study also assessed molecular markers of artemisinin and lumefantrine (partner drug) resistance. METHODS: Eligible patients were enrolled at the four sites, treated with standard doses of AL, and monitored for 28 days with clinical and laboratory assessments. The main outcomes were PCR corrected cure rates, day 3 positivity rates, safety of AL, and prevalence of single nucleotide polymorphisms in Plasmodium falciparum kelch 13 (Pfk13) (codon positions: 440-600) and P. falciparum multi-drug resistance 1 (Pfmdr1) genes (codons: N86Y, Y184F and D1246Y), markers of artemisinin and lumefantrine resistance, respectively. RESULTS: Of 344 patients enrolled, three withdrew, six were lost to follow-up; and results were analysed for 335 (97.4%) patients. Two patients had treatment failure (one early treatment failure and one recrudescent infection) after PCR correction, yielding an adequate clinical and parasitological response of > 98%. Day 3 positivity rates ranged from 0 to 5.7%. Common adverse events included cough, abdominal pain, vomiting, and diarrhoea. Two patients had serious adverse events; one died after the first dose of AL and another required hospitalization after the second dose of AL (on day 0) but recovered completely. Of 344 samples collected at enrolment (day 0), 92.7% and 100% were successfully sequenced for Pfk13 and Pfmdr1 genes, respectively. Six (1.9%) had non-synonymous mutations in Pfk13, none of which had been previously associated with artemisinin resistance. For Pfmdr1, the NFD haplotype (codons N86, 184F and D1246) was detected in 134 (39.0%) samples; ranging from 33.0% in Mlimba to 45.5% at Mkuzi. The difference among the four sites was not significant (p = 0.578). All samples had a single copy of the Pfmdr1 gene. CONCLUSION: The study indicated high efficacy of AL and the safety profile was consistent with previous reports. There were no known artemisinin-resistance Pfk13 mutations, but there was a high prevalence of a Pfmdr1 haplotype associated with reduced sensitivity to lumefantrine (but no reduced efficacy was observed in the subjects). Continued TES and monitoring of markers of resistance to artemisinin and partner drugs is critical for early detection of resistant parasites and to inform evidence-based malaria treatment policies. Trial Registration ClinicalTrials.gov NCT03387631.


Asunto(s)
Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Resistencia a Medicamentos/genética , Malaria/prevención & control , Polimorfismo de Nucleótido Simple/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Protozoarias/metabolismo , Tanzanía
17.
Malar J ; 17(1): 452, 2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30518365

RESUMEN

BACKGROUND: A nationwide, school, malaria survey was implemented to assess the risk factors of malaria prevalence and bed net use among primary school children in mainland Tanzania. This allowed the mapping of malaria prevalence at council level and assessment of malaria risk factors among school children. METHODS: A cross-sectional, school, malaria parasitaemia survey was conducted in 25 regions, 166 councils and 357 schools in three phases: (1) August to September 2014; (2) May 2015; and, (3) October 2015. Children were tested for malaria parasites using rapid diagnostic tests and were interviewed about household information, parents' education, bed net indicators as well as recent history of fever. Multilevel mixed effects logistic regression models were fitted to estimate odds ratios of risk factors for malaria infection and for bed net use while adjusting for school effect. RESULTS: In total, 49,113 children were interviewed and tested for malaria infection. The overall prevalence of malaria was 21.6%, ranging from < 0.1 to 53% among regions and from 0 to 76.4% among councils. The malaria prevalence was below 5% in 62 of the 166 councils and above 50% in 18 councils and between 5 and 50% in the other councils. The variation of malaria prevalence between schools was greatest in regions with a high mean prevalence, while the variation was marked by a few outlying schools in regions with a low mean prevalence. Overall, 70% of the children reported using mosquito nets, with the highest percentage observed among educated parents (80.7%), low land areas (82.7%) and those living in urban areas (82.2%). CONCLUSIONS: The observed prevalence among school children showed marked variation at regional and sub-regional levels across the country. Findings of this survey are useful for updating the malaria epidemiological profile and for stratification of malaria transmission by region, council and age groups, which is essential for guiding resource allocation, evaluation and prioritization of malaria interventions.


Asunto(s)
Malaria/epidemiología , Parasitemia/epidemiología , Estudiantes/estadística & datos numéricos , Adolescente , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Masculino , Prevalencia , Factores de Riesgo , Instituciones Académicas , Tanzanía/epidemiología
18.
Malar J ; 17(1): 261, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29996849

RESUMEN

BACKGROUND: Artemether-lumefantrine (AL) is the recommended first-line artemisinin-based combination therapy (ACT) for the treatment of uncomplicated falciparum malaria in most of the malaria-endemic countries, including Tanzania. Recently, dihydroartemisinin-piperaquine (DP) has been recommended as the alternative anti-malarial to ensure effective case management in Tanzania. This study assessed the parasite clearance rate and efficacy of AL and DP among patients aged 6 months to 10 years with uncomplicated falciparum malaria in two sites with different malaria transmission intensity. METHODS: This was an open-label, randomized trial that was conducted at two sites of Muheza Designated District Hospital and Ujiji Health Centre in Tanga and Kigoma regions, respectively. Patients meeting inclusion criteria were enrolled, treated with either AL or DP and followed up for 28 (extended to 42) and 42 (63) days for AL and DP, respectively. Parasite clearance time was monitored in the first 72 h post treatment and the clearance rate constant and half-life were calculated using an established parasite clearance estimator. The primary outcome was parasitological cure on days 28 and 42 for AL and DP, respectively, while secondary outcome was extended parasitological cure on days 42 and 63 for AL and DP, respectively. RESULTS: Of the 509 children enrolled (192 at Muheza and 317 at Ujiji), there was no early treatment failure and PCR uncorrected cure rates on day 28 in the AL group were 77.2 and 71.2% at Muheza and Ujiji, respectively. In the DP arm, the PCR uncorrected cure rate on day 42 was 73.6% at Muheza and 72.5% at Ujiji. With extended follow-up (to day 42 for AL and 63 for DP) cure rates were lower at Ujiji compared to Muheza (AL: 60.2 and 46.1%, p = 0.063; DP: 57.6 and 40.3% in Muheza and Ujiji, respectively, p = 0.021). The PCR corrected cure rate ranged from 94.6 to 100% for all the treatment groups at both sites. Parasite clearance rate constant was similar in the two groups and at both sites (< 0.28/h); the slope half-life was < 3.0 h and all but only one patient cleared parasites by 72 h. CONCLUSION: These findings confirm high efficacy of the first- and the newly recommended alternative ACT for treatments for uncomplicated falciparum malaria in Tanzania. The high parasite clearance rate suggests absence of suspected artemisinin resistance, defined as delayed parasite clearance. Trial registration This trial is registered at ClinicalTrials.gov under registration number NCT02590627.


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Artemisininas , Malaria Falciparum , Quinolinas , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Quinolinas/uso terapéutico , Tanzanía
19.
Malar J ; 17(1): 369, 2018 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-30333022

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) is the first-line anti-malarial treatment of uncomplicated malaria in most malaria endemic countries, including Tanzania. Unfortunately, there have been reports of artemisinin resistance and ACT failure from South East Asia highlighting the need to monitor therapeutic efficacy of ACT in these countries as recommended by World Health Organization. METHODS: Open-label single arm studies in mainland Tanzania were conducted in nine sentinel sites in 2011, 2012 and 2015 to assess the efficacy and safety of artemether/lumefantrine (AL) and artesunate/amodiaquine (ASAQ) using 28 days follow-up and dihydroartemisinin/piperaquine (DHAPQ) using 42 days follow-up. Mutations in the propeller domain of the Plasmodium falciparum kelch 13 (k13) gene and amplification of the P. falciparum plasmepsin 2 (pm2) gene, associated with artemisinin and piperaquine (PQ) resistance, were also investigated. RESULTS: Of the 428 patients enrolled, 328 patients provided study endpoint. For AL, the PCR corrected per-protocol analysis showed adequate clinical and parasitological response (ACPR) of 90.3% (n = 28; 95% CI 74.2-98.0) in Kyela 2012, 95.7% (n = 22; 95% CI 78.1-99.0) in Chamwino, 100% in Muheza (n = 29; 95% CI 88.1-100), 100% in Nagaga (n = 39; 95% CI 91.0-100) and Kyela 2015 (n = 60; 95% CI 94.0-100). For ASAQ, PCR corrected ACPR of 98% (n = 49; 95% CI 89.4-99.9) and 100% (n = 25; 95% CI 86.3-100) were observed in 2011 in Ujiji and Kibaha, respectively. For DHAPQ, the ACPR was 100% (n = 71; 95% CI 94.9-100). Of the 235 samples with genetic interpretable results, only 7 (3%) had non-synonymous k13 mutations. None of these are candidate or validated markers of artemisinin resistance and all patients carrying these alleles cleared the parasites on day 3. Of the DHAPQ group, 10% (3/29) of the samples with interpretable results had pm2 multiple copies and none of them was associated with treatment failure. CONCLUSION: All the tested ACT in mainland Tanzania were highly efficacious and none of validated k13 mutants associated with artemisinin resistance was observed. However, three isolates with multiple copy numbers of pm2 gene associated with PQ resistance among the limited samples tested successfully calls for further investigation. Trial registration Number ACTRN12615000159550. Registered 18th February 2015, https://www.anzctr.org.au/trial/MyTrial.aspx.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Quinolinas/uso terapéutico , Adolescente , Amodiaquina/efectos adversos , Antimaláricos/efectos adversos , Combinación Arteméter y Lumefantrina/efectos adversos , Artemisininas/efectos adversos , Niño , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Plasmodium falciparum/efectos de los fármacos , Estudios Prospectivos , Quinolinas/efectos adversos , Tanzanía
20.
Malar J ; 16(1): 255, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619076

RESUMEN

BACKGROUND: The Tanzania National Voucher Scheme (TNVS) was a public private partnership managed by the Ministry of Health that provided pregnant women and infants with highly subsidized (long-lasting) insecticide-treated nets between 2004 and 2014. It was implemented in the context of the National Insecticide Treated Nets (NATNETS) Programme and was the main keep up strategy for vulnerable populations. CASE DESCRIPTION: The programme design was adjusted considerably over time to incorporate new evidence, shifting public health policies, and changing donor priorities. Three TNVS models can be distinguished: (1) the fixed discount; (2) the fixed top-up; (3) the hybrid voucher model. The changes improved equity and effectiveness, but also had a profound effect on how the programme was managed and implemented. RESULTS: The TNVS reached the majority of beneficiaries with vouchers, and significantly increased household ownership and use of LLINs. While two mass distribution campaigns implemented between 2009 and 2011 achieved universal coverage and equity, the TNVS ensured continuous protection of the vulnerable populations before, during and after the campaigns. The TNVS stimulated and maintained a large national retail network which managed the LLIN supply chain. DISCUSSION AND LESSONS LEARNED: The effectiveness of the TNVS was a function of several interdependent factors, including the supply chain of vouchers through the public health system; the supply chain of nets in the commercial sector; the demand for nets from voucher recipients; management and risk mitigation measures; and the influence of global and donor objectives. CONCLUSION: The TNVS was a highly innovative and globally influential programme, which stimulated the thinking around effectively and equitably distributing ITNs, and contributed directly to the evolution of global policy. It was a fundamental component of the NATNETS programme which protected a malaria-vulnerable population for over a decade.


Asunto(s)
Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/prevención & control , Comercialización de los Servicios de Salud/métodos , Comercialización de los Servicios de Salud/normas , Complicaciones Parasitarias del Embarazo/prevención & control , Preescolar , Composición Familiar , Femenino , Humanos , Lactante , Mosquiteros Tratados con Insecticida/economía , Mosquiteros Tratados con Insecticida/normas , Mosquiteros Tratados con Insecticida/provisión & distribución , Comercialización de los Servicios de Salud/economía , Propiedad/estadística & datos numéricos , Embarazo , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA