Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Semin Immunol ; 25(2): 152-9, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23735226

RESUMEN

Nucleic acid vaccines have the potential to address issues of safety and effectiveness sometimes associated with vaccines based on live attenuated viruses and recombinant viral vectors. In addition, methods to manufacture nucleic acid vaccines are suitable as generic platforms and for rapid response, both of which will be very important for addressing newly emerging pathogens in a timely fashion. Plasmid DNA is the more widely studied form of nucleic acid vaccine and proof of principle in humans has been demonstrated, although no licensed human products have yet emerged. The RNA vaccine approach, based on mRNA and engineered RNA replicons derived from certain RNA viruses, is gaining increased attention and several vaccines are under investigation for infectious diseases, cancer and allergy. Human clinical trials are underway and the prospects for success are bright.


Asunto(s)
Plásmidos , ARN Viral , Vacunas de ADN , Animales , Ensayos Clínicos como Asunto , Ingeniería Genética , Humanos , Plásmidos/genética , ARN Viral/genética
2.
Mol Ther ; 22(12): 2118-2129, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25027661

RESUMEN

Nucleic acid-based vaccines such as viral vectors, plasmid DNA, and mRNA are being developed as a means to address a number of unmet medical needs that current vaccine technologies have been unable to address. Here, we describe a cationic nanoemulsion (CNE) delivery system developed to deliver a self-amplifying mRNA vaccine. This nonviral delivery system is based on Novartis's proprietary adjuvant MF59, which has an established clinical safety profile and is well tolerated in children, adults, and the elderly. We show that nonviral delivery of a 9 kb self-amplifying mRNA elicits potent immune responses in mice, rats, rabbits, and nonhuman primates comparable to a viral delivery technology, and demonstrate that, relatively low doses (75 µg) induce antibody and T-cell responses in primates. We also show the CNE-delivered self-amplifying mRNA enhances the local immune environment through recruitment of immune cells similar to an MF59 adjuvanted subunit vaccine. Lastly, we show that the site of protein expression within the muscle and magnitude of protein expression is similar to a viral vector. Given the demonstration that self-amplifying mRNA delivered using a CNE is well tolerated and immunogenic in a variety of animal models, we are optimistic about the prospects for this technology.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Emulsiones/administración & dosificación , Inmunidad Celular , ARN Mensajero/inmunología , ARN Viral/inmunología , Vacunas de ADN/administración & dosificación , Animales , Cationes , Emulsiones/química , Femenino , Macaca mulatta , Ratones , Ratones Endogámicos BALB C , Conejos , Ratas
3.
Proc Natl Acad Sci U S A ; 109(36): 14604-9, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-22908294

RESUMEN

Despite more than two decades of research and development on nucleic acid vaccines, there is still no commercial product for human use. Taking advantage of the recent innovations in systemic delivery of short interfering RNA (siRNA) using lipid nanoparticles (LNPs), we developed a self-amplifying RNA vaccine. Here we show that nonviral delivery of a 9-kb self-amplifying RNA encapsulated within an LNP substantially increased immunogenicity compared with delivery of unformulated RNA. This unique vaccine technology was found to elicit broad, potent, and protective immune responses, that were comparable to a viral delivery technology, but without the inherent limitations of viral vectors. Given the many positive attributes of nucleic acid vaccines, our results suggest that a comprehensive evaluation of nonviral technologies to deliver self-amplifying RNA vaccines is warranted.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Alphavirus/genética , Análisis de Varianza , Animales , Electroforesis en Gel de Agar , Escherichia coli , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Lípidos/química , Nanopartículas/química , ARN Interferente Pequeño/química , Ratas , Estadísticas no Paramétricas
4.
Proc Natl Acad Sci U S A ; 108(23): 9619-24, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21586636

RESUMEN

Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals. The 3.2-Å X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.


Asunto(s)
Anticuerpos Antivirales/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Virus Sincitiales Respiratorios/inmunología , Proteínas Virales de Fusión/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Sitios de Unión de Anticuerpos , Dicroismo Circular , Cristalografía por Rayos X , Humanos , Inmunización , Lactante , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Palivizumab , Multimerización de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/metabolismo , Homología de Secuencia de Aminoácido , Sigmodontinae , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/ultraestructura
5.
J Gen Virol ; 93(Pt 3): 504-515, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22131310

RESUMEN

Mature protein C of tick-borne encephalitis virus (TBEV) is cleaved from the polyprotein precursor by the viral NS2B/3 protease (NS2B/3(pro)). We showed previously that replacement of the NS2B/3(pro) cleavage site at the C terminus of protein C by the foot-and-mouth disease virus (FMDV) 2A StopGo sequence leads to the production of infectious virions. Here, we show that infectious virions can also be produced from a TBEV mutant bearing an inactivated 2A sequence through the expression of the FMDV 3C protease (3C(pro)) either in cis or in trans (from a TBEV replicon). Cleavage at the C terminus of protein C depended on the catalytic activity of 3C(pro) as well as on the presence of an optimized 3C(pro) cleavage site. Passage of the TBEV mutants bearing a 3C(pro) cleavage site either in the absence of 3C(pro) or in the presence of a catalytically inactive 3C(pro) led to the appearance of revertants in which protein C cleavage by NS2B/3(pro) had been regained. In three different revertants, a cleavage site for NS2B/3(pro), namely RR*C, was now present, leading to an elongated protein C. Furthermore, two revertants acquired additional mutations in the C terminus of protein C, eliminating two basic residues. Although these latter mutants showed wild-type levels of early RNA synthesis, their foci were smaller and an accumulation of protein C in the cytoplasm was observed. These findings suggest a role of the positive charge of the C terminus of protein C for budding of the nucleocapsid and further support the notion that TBEV protein C is a multifunctional protein.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Virus de la Fiebre Aftosa/enzimología , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Proteasas Virales 3C , Cisteína Endopeptidasas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Mutación , ARN Helicasas/genética , ARN Helicasas/metabolismo , Recombinación Genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética
6.
Nucleic Acids Res ; 38(22): 8328-37, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20705652

RESUMEN

MicroRNAs (miRNAs) are a class of small, non-coding RNAs that play a pivotal role in the regulation of posttranscriptional gene expression in a wide range of eukaryotic organisms. Although DNA viruses have been shown to encode miRNAs and exploit the cellular RNA silencing machinery as a convenient way to regulate viral and host gene expression, it is generally believed that this pathway is not available to RNA viruses that replicate in the cytoplasm of the cell because miRNA biogenesis is initiated in the nucleus. In fact, among the >200 viral miRNAs that have been experimentally verified so far, none is derived from an RNA virus. Here, we show that a cytoplasmic RNA virus can indeed encode and produce a functional miRNA. We introduced a heterologous miRNA-precursor stem-loop sequence element into the RNA genome of the flavivirus tick-borne encephalitis virus, and this led to the production of a functional miRNA during viral infection without impairing viral RNA replication. These findings demonstrate that miRNA biogenesis can be used by cytoplasmic RNA viruses to produce regulatory molecules for the modulation of the transcriptome.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/genética , MicroARNs/metabolismo , ARN Viral/metabolismo , Genoma Viral , Células HeLa , Humanos , Cinética , MicroARNs/biosíntesis , MicroARNs/química , ARN Viral/biosíntesis , ARN Viral/química , Ribonucleasa III/fisiología
7.
Sci Immunol ; 7(78): eadd3075, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36459542

RESUMEN

Respiratory tract resident memory T cells (TRM), typically generated by local vaccination or infection, can accelerate control of pulmonary infections that evade neutralizing antibody. It is unknown whether mRNA vaccination establishes respiratory TRM. We generated a self-amplifying mRNA vaccine encoding the influenza A virus nucleoprotein that is encapsulated in modified dendron-based nanoparticles. Here, we report how routes of immunization in mice, including contralateral versus ipsilateral intramuscular boosts, or intravenous and intranasal routes, influenced influenza-specific cell-mediated and humoral immunity. Parabiotic surgeries revealed that intramuscular immunization was sufficient to establish CD8 TRM in the lung and draining lymph nodes. Contralateral, compared with ipsilateral, intramuscular boosting broadened the distribution of lymph node TRM and T follicular helper cells but slightly diminished resulting levels of serum antibody. Intranasal mRNA delivery established modest circulating CD8 and CD4 T cell memory but augmented distribution to the respiratory mucosa. Combining intramuscular immunizations with an intranasal mRNA boost achieved high levels of both circulating T cell memory and lung TRM. Thus, routes of mRNA vaccination influence humoral and cell-mediated immunity, and intramuscular prime-boosting establishes lung TRM that can be further expanded by an additional intranasal immunization.


Asunto(s)
Linfocitos T CD4-Positivos , Vacunación , Animales , Ratones , ARN Mensajero , Anticuerpos Neutralizantes , Linfocitos T CD8-positivos , Vacunas de ARNm
8.
J Virol ; 84(1): 599-611, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19864381

RESUMEN

Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a "recombination trap," which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses but that its frequency appears to be very low and that therefore it probably does not represent a major risk in the use of live, attenuated flavivirus vaccines.


Asunto(s)
Flavivirus/genética , Prueba de Complementación Genética/métodos , Genoma Viral/genética , Recombinación Genética , Infecciones por Flavivirus/terapia , Métodos , Vacunas Atenuadas
9.
JCI Insight ; 6(21)2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34582377

RESUMEN

Chikungunya is a mosquito-borne disease that causes periodic but explosive epidemics of acute disease throughout the tropical world. Vaccine development against chikungunya virus (CHIKV) has been hampered by an inability to conduct efficacy trials due to the unpredictability of CHIKV outbreaks. Therefore, immune correlates are being explored to gain inference into vaccine-induced protection. This study is an in-depth serological characterization of Fab- and Fc-mediated antibody responses in selected phase II clinical trial participants following immunization with the recombinant measles-vectored CHIKV vaccine, MV-CHIK. Antibody comparisons were conducted between participants who received prime and those who received prime-boost vaccine regimens. MV-CHIK vaccination elicited potent Fab-mediated antibody responses (such as CHIKV-specific IgG, neutralization, and avidity), including dominant IgG3 responses, which translated into strong antibody-dependent cellular cytotoxicity and antibody-dependent cellular phagocytosis. At 1 month, prime-boost immunization led to significantly greater responses in every measured Fab and Fc antibody parameter. Interestingly, prime-boost-elicited antibodies decreased rapidly over time, until at 6 months both vaccine regimens displayed similar antibody profiles. Nonetheless, antibody avidity and antibody-dependent cellular phagocytosis remained significantly greater following boost immunization. Our observations suggest that a prime-boost administration of MV-CHIK will be more appropriate for CHIKV-endemic regions, while a prime-only regimen may be sufficient for travel purposes or outbreak situations.


Asunto(s)
Anticuerpos Antivirales/metabolismo , Fiebre Chikungunya/tratamiento farmacológico , Inmunización/métodos , Vacunas Virales/uso terapéutico , Femenino , Humanos , Masculino , Vacunas Virales/farmacología
10.
J Virol ; 83(21): 11201-10, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19692461

RESUMEN

The translation of flaviviral RNA genomes yields a single polyprotein that is processed into the mature proteins by viral and host cell proteases. Mature capsid protein C is freed from the polyprotein by the viral NS2B/3 protease, cleaving in the C-terminal region of protein C in front of the signal sequence for prM. Protein C has been shown to be involved in viral assembly and RNA packaging. To examine further the role of protein C and its production by proteolysis, we replaced the NS2B/3 capsid cleavage site in tick-borne encephalitis virus (TBEV) and West Nile virus (WNV) by the 2A protein of foot-and-mouth disease virus (TBEV-2A and WNV-2A). This obviated the need for NS2B/3 processing at the C terminus of mature protein C while simultaneously producing a 19-amino-acid extension on protein C. Infectious virions were generated with both viruses; the phenotype depended on the host cell. TBEV-2A replicated well in BHK-21 cells but was essentially incapable of replication in tick cells. In contrast, WNV-2A replicated well in mosquito cells but showed a small-plaque phenotype in Vero cells, with frequent production of larger plaques. Sequencing of viral RNA from the larger plaques showed substitutions in the signal sequence for prM, presumably improving coordinated protein processing at the C-prM junction. Furthermore, both TBEV-2A and WNV-2A were also defective in unpackaging and/or early RNA synthesis. Together, these results indicate a role for flavivirus protein C in both viral assembly and RNA replication, possibly by interacting with host cell factors required to set up the cell for RNA replication.


Asunto(s)
Antígenos Virales/metabolismo , Cápside/metabolismo , Flavivirus/metabolismo , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Línea Celular , Cricetinae , Cricetulus , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Flavivirus/genética , Virus de la Fiebre Aftosa/metabolismo , Humanos , Insectos , Datos de Secuencia Molecular , ARN Viral/genética , ARN Viral/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Virus del Nilo Occidental/metabolismo
11.
J Virol ; 83(11): 5581-91, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19297470

RESUMEN

The internal hydrophobic sequence within the flaviviral capsid protein (protein C) plays an important role in the assembly of infectious virions. Here, this sequence was analyzed in a West Nile virus lineage I isolate (crow V76/1). An infectious cDNA clone was constructed and used to introduce deletions into the internal hydrophobic domain which comprises helix alpha2 and part of the loop intervening helices alpha2 and alpha3. In total, nine capsid deletion mutants (4 to 14 amino acids long) were constructed and tested for virus viability. Some of the short deletions did not significantly affect growth in cell culture, whereas larger deletions removing almost the entire hydrophobic region significantly impaired viral growth. Efficient growth of the majority of mutants could, however, be restored by the acquisition of second-site mutations. In most cases, these resuscitating mutations were point mutations within protein C changing individual amino acids into more hydrophobic residues, reminiscent of what had been observed previously for another flavivirus, tick-borne encephalitis virus. However, we also identified viable spontaneous pseudorevertants with more than one-third of the capsid protein removed, i.e., 36 or 37 of a total of 105 residues, including all of helix alpha3 and a hydrophilic segment connecting alpha3 and alpha4. These large deletions are predicted to induce formation of large, predominantly hydrophobic fusion helices which may substitute for the loss of the internal hydrophobic domain, underlining the unrivaled structural and functional flexibility of protein C.


Asunto(s)
Proteínas de la Cápside/química , Virión/química , Ensamble de Virus , Virus del Nilo Occidental/química , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Cricetinae , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Eliminación de Gen , Genoma Viral/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Proteína C/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Viral/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/aislamiento & purificación , Virus del Nilo Occidental/metabolismo
12.
Virol J ; 7: 157, 2010 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-20630098

RESUMEN

Obtaining suitable seed viruses for influenza vaccines poses a challenge for public health authorities and manufacturers. We used reverse genetics to generate vaccine seed-compatible viruses from the 2009 pandemic swine-origin influenza virus. Comparison of viruses recovered with variations in residues 186 and 194 (based on the H3 numbering system) of the viral hemagglutinin showed that these viruses differed with respect to their ability to grow in eggs and cultured cells. Thus, we have demonstrated that molecular cloning of members of a quasispecies can help in selection of seed viruses for vaccine manufacture.


Asunto(s)
Brotes de Enfermedades , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H1N1 del Virus de la Influenza A/fisiología , Gripe Humana/virología , Mutación Puntual , Replicación Viral , Secuencia de Aminoácidos , Animales , Línea Celular , Embrión de Pollo , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/química , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Datos de Secuencia Molecular , Alineación de Secuencia
13.
J Virol ; 82(17): 8272-82, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18562534

RESUMEN

The infectivity of flavivirus particles depends on a maturation process that is triggered by the proteolytic cleavage of the precursor of the M protein (prM). This activation cleavage is naturally performed by ubiquitous cellular proteases of the furin family, which typically recognize the multibasic sequence motif R-X-R/K-R. Previously, we demonstrated that a tick-borne encephalitis virus (TBEV) mutant with an altered cleavage motif, R-X-R, produced immature, noninfectious particles that could be activated by exogenous trypsin, which cleaves after single basic residues. Here, we report the adaptation of this mutant to chymotrypsin, a protease specific for large, hydrophobic amino acid residues. Using selection pressure in cell culture, two different mutations conferring a chymotrypsin-dependent phenotype were identified. Surprisingly, one of these mutations (Ser85Phe) occurred three positions upstream of the natural cleavage site. The other mutation (Arg89His) arose at the natural cleavage position but involved a His residue, which is not a typical chymotrypsin cleavage site. Efficient cleavage of protein prM and activation by the heterologous protease were confirmed using various recombinant TBEV mutants. Mutants with only the originally selected mutations exhibited unimpaired export kinetics and were genotypically stable during at least six cell culture passages. However, in contrast to the wild-type virus or trypsin-dependent mutants, chymotrypsin-dependent mutants were not neurovirulent in suckling mice. Our results demonstrate that flaviviruses with altered protease specificities can be generated and suggest that this approach can be used for the construction of viral mutants or vectors that can be activated on demand and have restricted tissue tropism and virulence.


Asunto(s)
Quimotripsina/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/química , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Escherichia coli/genética , Estudios de Factibilidad , Cinética , Mutación , Plásmidos , ARN Viral/análisis , ARN Viral/genética , ARN Viral/aislamiento & purificación , Recombinación Genética , Selección Genética , Sensibilidad y Especificidad , Análisis de Secuencia de Proteína , Transfección , Tripsina/metabolismo , Proteínas del Envoltorio Viral/análisis , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/fisiología , Virulencia/genética , Virulencia/fisiología
14.
J Virol ; 82(5): 2218-29, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18160443

RESUMEN

The mature capsid protein C of flaviviruses is generated through the proteolytic cleavage of the precursor polyprotein by the viral NS2B/3 protease. This cleavage is a prerequisite for the subsequent processing of the viral surface protein prM, and the concerted progression of these events plays a key role in the process of the assembly of infectious virions. Protein C of tick-borne encephalitis virus (TBEV) contains two amino acid sequence motifs within the carboxy-terminal region that match the canonical NS2B/3 recognition site. Site-specific mutagenesis in the context of the full-length TBEV genome was used to investigate the in vivo cleavage specificity of the viral protease in this functionally important domain. The results indicate that the downstream site is necessary and sufficient for efficient cleavage and virion assembly; in contrast, the upstream site is dispensable and placed in a structural context that renders it largely inaccessible to the viral protease. Mutants with impaired C-prM cleavage generally exhibited a significantly increased cytotoxicity. In spite of the clear preference of the protease for only one of the two naturally occurring motifs, the enzyme was unexpectedly tolerant to both the presence of a noncanonical threonine residue at position P2 and the position of cleavage relative to the adjacent internal prM signal sequence. The insertion of three amino acid residues downstream of the cleavage site did not change the viral phenotype. Thus, this study further illuminates the specificity of the TBEV protease and reveals that the carboxy-terminal region of protein C has a remarkable functional flexibility in its role in the assembly of infectious virions.


Asunto(s)
Cápside/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/metabolismo , Animales , Cápside/química , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Técnica del Anticuerpo Fluorescente , Hidrólisis , Mutagénesis Sitio-Dirigida , ARN Viral/biosíntesis , Ensamble de Virus
15.
Virus Res ; 111(2): 161-74, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15871909

RESUMEN

Tick-borne encephalitis virus (TBEV) is an important human pathogen that causes severe neurological illness in large areas of Europe and Asia. The neuropathogenesis of this disease agent is determined by its capacity to enter the central nervous system (CNS) after peripheral inoculation ("neuroinvasiveness") and its ability to replicate and cause damage within the CNS ("neurovirulence"). TBEV is a small, enveloped flavivirus with an unsegmented, positive-stranded RNA genome. Mutations affecting various steps of its natural replication cycle were shown to influence its neuropathogenic properties. This review describes experimental approaches and summarizes results on molecular determinants of neurovirulence and neuroinvasiveness that have been identified for this virus. It focuses on molecular mechanisms of three particular steps of the viral life cycle that have been studied in some detail for TBEV and two closely related tick-borne flaviviruses (Louping ill virus (LIV) and Langat virus (LGTV)), namely (i) the envelope protein E and its role in viral attachment to the cell surface, (ii) the 3'-noncoding region of the genome and its importance for viral RNA replication, and (iii) the capsid protein C and its role in the assembly process of infectious virus particles. Mutations affecting each of these three molecular targets significantly influence neuropathogenesis of TBEV, particularly its neuroinvasiveness. The understanding of molecular determinants of TBEV neuropathogenesis is relevant for vaccine development, also against other flaviviruses.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/fisiología , Virus de la Encefalitis Transmitidos por Garrapatas/patogenicidad , Encefalitis Transmitida por Garrapatas/fisiopatología , Replicación Viral , Animales , Línea Celular , Cricetinae , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/virología , Humanos , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Virulencia
16.
Adv Genet ; 89: 179-233, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25620012

RESUMEN

This chapter provides a brief introduction to nucleic acid-based vaccines and recent research in developing self-amplifying mRNA vaccines. These vaccines promise the flexibility of plasmid DNA vaccines with enhanced immunogenicity and safety. The key to realizing the full potential of these vaccines is efficient delivery of nucleic acid to the cytoplasm of a cell, where it can amplify and express the encoded antigenic protein. The hydrophilicity and strong net negative charge of RNA impedes cellular uptake. To overcome this limitation, electrostatic complexation with cationic lipids or polymers and physical delivery using electroporation or ballistic particles to improve cellular uptake has been evaluated. This chapter highlights the rapid progress made in using nonviral delivery systems for RNA-based vaccines. Initial preclinical testing of self-amplifying mRNA vaccines has shown nonviral delivery to be capable of producing potent and robust innate and adaptive immune responses in small animals and nonhuman primates. Historically, the prospect of developing mRNA vaccines was uncertain due to concerns of mRNA instability and the feasibility of large-scale manufacturing. Today, these issues are no longer perceived as barriers in the widespread implementation of the technology. Currently, nonamplifying mRNA vaccines are under investigation in human clinical trials and can be produced at a sufficient quantity and quality to meet regulatory requirements. If the encouraging preclinical data with self-amplifying mRNA vaccines are matched by equivalently positive immunogenicity, potency, and tolerability in human trials, this platform could establish nucleic acid vaccines as a versatile new tool for human immunization.


Asunto(s)
ARN Mensajero/administración & dosificación , Vacunas/administración & dosificación , Animales , Antígenos/genética , Electroporación , Humanos , Nanopartículas/administración & dosificación , Nanopartículas/química , ARN Mensajero/efectos adversos , ARN Mensajero/genética , Vacunas/efectos adversos , Vacunas Virales
17.
Viral Immunol ; 17(4): 461-72, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15671744

RESUMEN

The flaviviruses comprise a number of arthropod-transmitted human disease agents that cause significant and increasing health threats in major parts of the world. The development of new vaccines is of vital importance, but the stringent need for safety, efficacy and cost-effectiveness together with the problems associated with the specific immune pathogenesis of some flavivirus infections impose significant challenges to innovative vaccine research. Using tick-borne encephalitis virus (TBEV) as a model, the viral capsid protein gene was recently identified as a novel target for generating flavivirus vaccines. This approach can be applied to produce either attenuated strains that can serve as live vaccines or to make a new type of a genetic vaccine consisting of non-infectious RNA replicons from which subviral particles are synthesized in vivo. Flaviviruses are small, enveloped viruses with an unsegmented positive-stranded RNA genome encoding a single polyprotein that is cleaved into the individual viral proteins. The specific introduction of various deletions and other mutations into the genomic segment coding for the capsid protein C and the biochemical and immunological characterization of the resulting mutants in cell culture and an animal model have revealed remarkable properties of this building block of the nucleocapsid and yielded information that opened the way for new vaccine approaches. In this review the in vitro and in vivo findings with various capsid deletion mutants of TBEV are summarized and discussed in the context of recent structural and biochemical data obtained for protein C of various flaviviruses. Potential benefits of this new strategy for generating flavivirus vaccines as well as hurdles that still have to be overcome are discussed in comparison to conventional or other experimental approaches. Capsid-deletion mutants can be used to rationally design safe and effective vaccine strains or to create new vaccines that combine advantages of genetic vaccination, conventional inactivated, and live vaccines.


Asunto(s)
Proteínas de la Cápside/genética , Infecciones por Flavivirus/prevención & control , Flavivirus/inmunología , Eliminación de Secuencia , Vacunas Virales/administración & dosificación , Animales , Cápside , Proteínas de la Cápside/inmunología , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Flavivirus/genética , Humanos , Inmunización , Vacunas Virales/genética , Vacunas Virales/inmunología
18.
Vaccine ; 31(6): 919-26, 2013 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-23246547

RESUMEN

Human cytomegalovirus (hCMV) is prevalent worldwide with infection generally being asymptomatic. Nevertheless, hCMV infection can lead to significant morbidity and mortality. Primary infection of seronegative women or reactivation/re-infection of seropositive women during pregnancy can result in transmission to the fetus, leading to severe neurological defects. In addition, hCMV is the most common viral infection in immunosuppressed organ transplant recipients and can produce serious complications. Hence, a safe and effective vaccine to prevent hCMV infection is an unmet medical need. Neutralizing antibodies to several hCMV glycoproteins, and complexes thereof, have been identified in individuals following hCMV infection. Interestingly, a portion of the CMV-specific neutralizing antibody responses are directed to epitopes found on glycoprotein complexes but not the individual proteins. Using an alphavirus replicon particle (VRP) vaccine platform, we showed that bicistronic VRPs encoding hCMV gH and gL glycoproteins produce gH/gL complexes in vitro. Furthermore, mice vaccinated with these gH/gL-expressing VRPs produced broadly cross-reactive complement-independent neutralizing antibodies to hCMV. These neutralizing antibody responses were of higher titer than those elicited in mice vaccinated with monocistronic VRPs encoding gH or gL antigens, and they were substantially more potent than those raised by VRPs encoding gB. These findings underscore the utility of co-delivery of glycoprotein components such as gH and gL for eliciting potent, broadly neutralizing immune responses against hCMV, and indicate that the gH/gL complex represents a potential target for future hCMV vaccine development.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra Citomegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/inmunología , Alphavirus/genética , Animales , Reacciones Cruzadas , Vacunas contra Citomegalovirus/administración & dosificación , Vacunas contra Citomegalovirus/genética , Femenino , Vectores Genéticos , Ratones , Ratones Endogámicos BALB C , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas Virales/genética
19.
Vaccine ; 31(37): 3872-8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23827313

RESUMEN

Parvovirus B19 is the causative agent of fifth disease in children, aplastic crisis in those with blood dyscrasias, and hydrops fetalis. Previous parvovirus B19 virus-like-particle (VLP) vaccine candidates were produced by co-infection of insect cells with two baculoviruses, one expressing wild-type VP1 and the other expressing VP2. In humans, the VLPs were immunogenic but reactogenic. We have developed new VLP-based parvovirus B19 vaccine candidates, produced by co-expressing VP2 and either wild-type VP1 or phospholipase-negative VP1 in a regulated ratio from a single plasmid in Saccharomyces cerevisiae. These VLPs are expressed efficiently, are very homogeneous, and can be highly purified. Although VP2 alone can form VLPs, in mouse immunizations, VP1 and the adjuvant MF59 are required to elicit a neutralizing response. Wild-type VLPs and those with phospholipase-negative VP1 are equivalently potent. The purity, homogeneity, yeast origin, and lack of phospholipase activity of these VLPs address potential causes of previously observed reactogenicity.


Asunto(s)
Parvovirus B19 Humano/inmunología , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Infecciones por Parvoviridae/inmunología , Infecciones por Parvoviridae/prevención & control , Parvovirus B19 Humano/genética , Fosfolipasas A2/metabolismo , Polisorbatos , Saccharomyces cerevisiae/genética , Escualeno/inmunología , Vacunas Sintéticas/genética , Vacunas Virales/aislamiento & purificación
20.
Emerg Microbes Infect ; 2(8): e52, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26038486

RESUMEN

The timing of vaccine availability is essential for an effective response to pandemic influenza. In 2009, vaccine became available after the disease peak, and this has motivated the development of next generation vaccine technologies for more rapid responses. The SAM(®) vaccine platform, now in pre-clinical development, is based on a synthetic, self-amplifying mRNA, delivered by a synthetic lipid nanoparticle (LNP). When used to express seasonal influenza hemagglutinin (HA), a SAM vaccine elicited potent immune responses, comparable to those elicited by a licensed influenza subunit vaccine preparation. When the sequences coding for the HA and neuraminidase (NA) genes from the H7N9 influenza outbreak in China were posted on a web-based data sharing system, the combination of rapid and accurate cell-free gene synthesis and SAM vaccine technology allowed the generation of a vaccine candidate in 8 days. Two weeks after the first immunization, mice had measurable hemagglutinin inhibition (HI) and neutralizing antibody titers against the new virus. Two weeks after the second immunization, all mice had HI titers considered protective. If the SAM vaccine platform proves safe, potent, well tolerated and effective in humans, fully synthetic vaccine technologies could provide unparalleled speed of response to stem the initial wave of influenza outbreaks, allowing first availability of a vaccine candidate days after the discovery of a new virus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA