Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 18(8): 826-831, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28722720

RESUMEN

Biologists, physicians and immunologists have contributed to the understanding of the cellular participants and biological pathways involved in inflammation. Here, we provide a general guide to the cellular and humoral contributors to inflammation as well as to the pathways that characterize inflammation in specific organs and tissues.


Asunto(s)
Enfermedades Transmisibles/inmunología , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Inflamación/inmunología , Enfermedad Aguda , Enfermedad Crónica , Humanos
3.
Diabetes Obes Metab ; 25(1): 98-109, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054143

RESUMEN

AIM: The voltage-gated potassium channel Kv 11.1 is important for repolarizing the membrane potential in excitable cells such as myocytes, pancreatic α- and ß-cells. Moxifloxacin blocks the Kv 11.1 channel and increases the risk of hypoglycaemia in patients with diabetes. We investigated glucose regulation and secretion of glucoregulatory hormones in young people with and without moxifloxacin, a drug known to block the Kv 11.1 channel. MATERIALS AND METHODS: The effect of moxifloxacin (800 mg/day for 4 days) or placebo on glucose regulation was assessed in a randomized, double-blind, crossover study of young men and women (age 20-40 years and body mass index 18.5-27.5 kg/m2 ) without chronic disease, using 6-h oral glucose tolerance tests and continuous glucose monitoring. RESULTS: Thirty-eight participants completed the study. Moxifloxacin prolonged the QTcF interval and increased heart rate. Hypoglycaemia was more frequently observed with moxifloxacin, both during the 8 days of continuous glucose monitoring and during the oral glucose tolerance tests. Hypoglycaemia questionnaire scores were higher after intake of moxifloxacin. Moxifloxacin reduced the early plasma-glucose response (AUC0-30 min ) by 7% (95% CI: -9% to -4%, p < .01), and overall insulin response (AUC0-360 min ) decreased by 18% (95% CI: -24% to -11%, p < .01) and plasma glucagon increased by 17% (95% CI: 4%-33%, p = .03). Insulin sensitivity calculated as the Matsuda index increased by 11%, and MISI, an index of muscle insulin sensitivity, increased by 34%. CONCLUSIONS: In young men and women, moxifloxacin, a drug known to block the Kv 11.1 channel, increased QT interval, decreased glucose levels and was associated with increased muscle insulin sensitivity and more frequent episodes of hypoglycaemia.


Asunto(s)
Fluoroquinolonas , Resistencia a la Insulina , Humanos , Femenino , Adolescente , Adulto Joven , Adulto , Moxifloxacino/efectos adversos , Fluoroquinolonas/efectos adversos , Estudios Cruzados , Automonitorización de la Glucosa Sanguínea , Glucemia
4.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834034

RESUMEN

Neutrophils are innate immune cells that play a key role in pathogen clearance. They contribute to inflammatory diseases, including diabetes, by releasing pro-inflammatory cytokines, reactive oxygen species, and extracellular traps (NETs). NETs contain a DNA backbone and catalytically active myeloperoxidase (MPO), which produces hypochlorous acid (HOCl). Chlorination of the DNA nucleoside 8-chloro-deoxyguanosine has been reported as an early marker of inflammation in diabetes. In this study, we examined the reactivity of different chlorinated nucleosides, including 5-chloro-(deoxy)cytidine (5ClC, 5CldC), 8-chloro-(deoxy)adenosine (8ClA, 8CldA) and 8-chloro-(deoxy)guanosine (8ClG, 8CldG), with the INS-1E ß-cell line. Exposure of INS-1E cells to 5CldC, 8CldA, 8ClA, and 8CldG decreased metabolic activity and intracellular ATP, and, together with 8ClG, induced apoptotic cell death. Exposure to 8ClA, but not the other nucleosides, resulted in sustained endoplasmic reticulum stress, activation of the unfolded protein response, and increased expression of thioredoxin-interacting protein (TXNIP) and heme oxygenase 1 (HO-1). Exposure of INS-1E cells to 5CldC also increased TXNIP and NAD(P)H dehydrogenase quinone 1 (NQO1) expression. In addition, a significant increase in the mRNA expression of NQO1 and GPx4 was seen in INS-1E cells exposed to 8ClG and 8CldA, respectively. However, a significant decrease in intracellular thiols was only observed in INS-1E cells exposed to 8ClG and 8CldG. Finally, a significant decrease in the insulin stimulation index was observed in experiments with all the chlorinated nucleosides, except for 8ClA and 8ClG. Together, these results suggest that increased formation of chlorinated nucleosides during inflammation in diabetes could influence ß-cell function and may contribute to disease progression.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Insulina , Humanos , Nucleósidos/farmacología , Nucleósidos/metabolismo , Inflamación/metabolismo , ADN/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo
5.
J Anim Physiol Anim Nutr (Berl) ; 107(5): 1262-1278, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36591865

RESUMEN

Indoor-confined cats are prone to developing obesity due to a sedentary life and an energy intake exceeding energy requirements. As in humans, feline obesity decreases insulin sensitivity and increases the risk of developing feline diabetes mellitus, but the pathophysiological mechanisms are currently poorly understood. Human obesity-related metabolic alterations seem to relate to changes in the expression of genes involved in glucose metabolism, insulin action and inflammation. The objective of the current study was to investigate changes in the expression of genes relating to obesity, glucose metabolism and inflammation in cats with non-experimentally induced obesity. Biopsies from the sartorius muscle and subcutaneous adipose tissue were obtained from 73 healthy, neutered, indoor-confined domestic shorthaired cats ranging from lean to obese. Quantification of obesity-related gene expression levels relative to glyceraldehyde-3-phosphate dehydrogenase was performed by quantitative real-time polymerase chain reaction. A negative association between obesity and adiponectin expression was observed in the adipose tissue (mean ± SD; normal weight, 27.30 × 10-3 ± 77.14 × 10-3 ; overweight, 2.89 × 10-3 ± 0.38 × 10-3 and obese, 2.93 × 10-3 ± 4.20 × 10-3 , p < 0.05). In muscle, the expression of peroxisome proliferative activated receptor-γ2 and plasminogen activator inhibitor-1 was increased in the obese compared to the normal-weight cats, and resistin was increased in the normal-weight compared to the overweight cats. There were no detectable obesity-related changes in the messenger RNA levels of inflammatory cytokines. In conclusion, a possible obesity-related low-grade inflammation caused by increased expression of key proinflammatory regulators was not observed. This could imply that the development of feline obesity and ensuing insulin resistance may not be based on tissue-derived inflammation, but caused by several determining factors, many of which still need further investigation.


Asunto(s)
Enfermedades de los Gatos , Resistencia a la Insulina , Gatos , Animales , Humanos , Sobrepeso/veterinaria , Obesidad/genética , Obesidad/veterinaria , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Músculo Esquelético/metabolismo , Adiponectina/metabolismo , Resistencia a la Insulina/fisiología , Inflamación/genética , Inflamación/veterinaria , Inflamación/metabolismo , Expresión Génica , Glucosa/metabolismo , Enfermedades de los Gatos/genética , Enfermedades de los Gatos/metabolismo
6.
J Infect Dis ; 225(12): 2219-2228, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303091

RESUMEN

BACKGROUND: We previously reported that reduced GPR183 expression in blood from tuberculosis (TB) patients with diabetes is associated with more severe TB. METHODS: To further elucidate the role of GPR183 and its oxysterol ligands in the lung, we studied dysglycemic mice infected with Mycobacterium tuberculosis (Mtb). RESULTS: We found upregulation of the oxysterol-producing enzymes CH25H and CYP7B1 and increased concentrations of 25-hydroxycholesterol upon Mtb infection in the lungs of mice. This was associated with increased expression of GPR183 indicative of oxysterol-mediated recruitment of GPR183-expressing immune cells to the lung. CYP7B1 was predominantly expressed by macrophages in TB granulomas. CYP7B1 expression was significantly blunted in lungs from dysglycemic animals, which coincided with delayed macrophage infiltration. GPR183-deficient mice similarly had reduced macrophage recruitment during early infection. CONCLUSIONS: Taken together, we demonstrate a requirement of the GPR183/oxysterol axis for positioning of macrophages to the site of infection and add an explanation to more severe TB in diabetes patients.


Asunto(s)
Mycobacterium tuberculosis , Oxiesteroles , Receptores Acoplados a Proteínas G , Tuberculosis , Animales , Humanos , Pulmón/microbiología , Macrófagos , Ratones , Mycobacterium tuberculosis/fisiología , Oxiesteroles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360779

RESUMEN

Pro-inflammatory cytokines promote cellular iron-import through enhanced divalent metal transporter-1 (DMT1) expression in pancreatic ß-cells, consequently cell death. Inhibition of ß-cell iron-import by DMT1 silencing protects against apoptosis in animal models of diabetes. However, how alterations of signaling networks contribute to the protective action of DMT1 knock-down is unknown. Here, we performed phosphoproteomics using our sequential enrichment strategy of mRNA, protein, and phosphopeptides, which enabled us to explore the concurrent molecular events in the same set of wildtype and DMT1-silenced ß-cells during IL-1ß exposure. Our findings reveal new phosphosites in the IL-1ß-induced proteins that are clearly reverted by DMT1 silencing towards their steady-state levels. We validated the levels of five novel phosphosites of the potential protective proteins using parallel reaction monitoring. We also confirmed the inactivation of autophagic flux that may be relevant for cell survival induced by DMT1 silencing during IL-1ß exposure. Additionally, the potential protective proteins induced by DMT1 silencing were related to insulin secretion that may lead to improving ß-cell functions upon exposure to IL-1ß. This global profiling has shed light on the signal transduction pathways driving the protection against inflammation-induced cell death in ß-cells after DMT1 silencing.


Asunto(s)
Apoptosis/inmunología , Autofagia/inmunología , Proteínas de Transporte de Catión/deficiencia , Técnicas de Silenciamiento del Gen , Células Secretoras de Insulina/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Transducción de Señal/inmunología , Animales , Apoptosis/genética , Autofagia/genética , Proteínas de Transporte de Catión/inmunología , Interleucina-1beta/genética , Interleucina-6/genética , Ratones , Transducción de Señal/genética
8.
Am J Physiol Endocrinol Metab ; 318(6): E892-E900, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32255680

RESUMEN

Proinsulin is a misfolding-prone protein, and its efficient breakdown is critical when ß-cells are confronted with high-insulin biosynthetic demands, to prevent endoplasmic reticulum stress, a key trigger of secretory dysfunction and, if uncompensated, apoptosis. Proinsulin degradation is thought to be performed by the constitutively expressed standard proteasome, while the roles of other proteasomes are unknown. We recently demonstrated that deficiency of the proinsulin chaperone glucose-regulated protein 94 (GRP94) causes impaired proinsulin handling and defective insulin secretion associated with a compensated endoplasmic reticulum stress response. Taking advantage of this model of restricted folding capacity, we investigated the role of different proteasomes in proinsulin degradation, reasoning that insulin secretory dynamics require an inducible protein degradation system. We show that the expression of only one enzymatically active proteasome subunit, namely, the inducible ß5i-subunit, was increased in GRP94 CRISPR/Cas9 knockout (KO) cells. Additionally, the level of ß5i-containing intermediate proteasomes was significantly increased in these cells, as was ß5i-related chymotrypsin-like activity. Moreover, proinsulin levels were restored in GRP94 KO upon ß5i small interfering RNA-mediated knockdown. Finally, the fraction of ß-cells expressing the ß5i-subunit is increased in human islets from type 2 diabetes patients. We conclude that ß5i is an inducible proteasome subunit dedicated to the degradation of mishandled proinsulin.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Estrés del Retículo Endoplásmico/genética , Degradación Asociada con el Retículo Endoplásmico/genética , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Proinsulina/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Animales , Diabetes Mellitus Tipo 2/metabolismo , Femenino , Técnicas de Inactivación de Genes , Humanos , Islotes Pancreáticos/metabolismo , Glicoproteínas de Membrana/genética , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Pliegue de Proteína , Ratas
9.
Int J Mol Sci ; 21(12)2020 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-32560352

RESUMEN

BACKGROUND: Intercellular communication mediated by cationic fluxes through the Connexin family of gap junctions regulates glucose-stimulated insulin secretion and beta cell defense against inflammatory stress. Rotigaptide (RG, ZP123) is a peptide analog that increases intercellular conductance in cardiac muscle cells by the prevention of dephosphorylation and thereby uncoupling of Connexin-43 (Cx43), possibly via action on unidentified protein phosphatases. For this reason, it is being studied in human arrhythmias. It is unknown if RG protects islet cell function and viability against inflammatory or metabolic stress, a question of considerable translational interest for the treatment of diabetes. METHODS: Apoptosis was measured in human islets shown to express Cx43, treated with RG or the control peptide ZP119 and exposed to glucolipotoxicity or IL-1ß + IFNÉ£. INS-1 cells shown to lack Cx43 were used to examine if RG protected human islet cells via Cx43 coupling. To study the mechanisms of action of Cx43-independent effects of RG, NO, IkBα degradation, mitochondrial activity, ROS, and insulin mRNA levels were determined. RESULTS: RG reduced cytokine-induced apoptosis ~40% in human islets. In Cx43-deficient INS-1 cells, this protective effect was markedly blunted as expected, but unexpectedly, RG still modestly reduced apoptosis, and improved mitochondrial function, insulin-2 gene levels, and accumulated insulin release. RG reduced NO production in Cx43-deficient INS-1 cells associated with reduced iNOS expression, suggesting that RG blunts cytokine-induced NF-κB signaling in insulin-producing cells in a Cx43-independent manner. CONCLUSION: RG reduces cytokine-induced cell death in human islets. The protective action in Cx43-deficient INS-1 cells suggests a novel inhibitory mechanism of action of RG on NF-κB signaling.


Asunto(s)
Conexina 43/metabolismo , Citocinas/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Oligopéptidos/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores , Muerte Celular/efectos de los fármacos , Línea Celular , Conexina 43/genética , Citocinas/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/citología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico
10.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33374803

RESUMEN

Pancreatic ß-cell-specific clock knockout mice develop ß-cell oxidative-stress and failure, as well as glucose-intolerance. How inflammatory stress affects the cellular clock is under-investigated. Real-time recording of Per2:luciferase reporter activity in murine and human pancreatic islets demonstrated that the proinflammatory cytokine interleukin-1ß (IL-1ß) lengthened the circadian period. qPCR-profiling of core clock gene expression in insulin-producing cells suggested that the combination of the proinflammatory cytokines IL-1ß and interferon-γ (IFN-γ) caused pronounced but uncoordinated increases in mRNA levels of multiple core clock genes, in particular of reverse-erythroblastosis virus α (Rev-erbα), in a dose- and time-dependent manner. The REV-ERBα/ß agonist SR9009, used to mimic cytokine-mediated Rev-erbα induction, reduced constitutive and cytokine-induced brain and muscle arnt-like 1 (Bmal1) mRNA levels in INS-1 cells as expected. SR9009 induced reactive oxygen species (ROS), reduced insulin-1/2 (Ins-1/2) mRNA and accumulated- and glucose-stimulated insulin secretion, reduced cell viability, and increased apoptosis levels, reminiscent of cytokine toxicity. In contrast, low (<5,0 µM) concentrations of SR9009 increased Ins-1 mRNA and accumulated insulin-secretion without affecting INS-1 cell viability, mirroring low-concentration IL-1ß mediated ß-cell stimulation. Inhibiting nitric oxide (NO) synthesis, the lysine deacetylase HDAC3 and the immunoproteasome reduced cytokine-mediated increases in clock gene expression. In conclusion, the cytokine-combination perturbed the intrinsic clocks operative in mouse and human pancreatic islets and induced uncoordinated clock gene expression in INS-1 cells, the latter effect associated with NO, HDAC3, and immunoproteasome activity.


Asunto(s)
Factores de Transcripción ARNTL/genética , Ritmo Circadiano , Células Secretoras de Insulina/metabolismo , Interferón gamma/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción ARNTL/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Femenino , Células HEK293 , Histona Desacetilasas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Interferón gamma/farmacología , Masculino , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-33137873

RESUMEN

Selective inhibition of histone deacetylase 3 (HDAC3) prevents glucolipotoxicity-induced ß-cell dysfunction and apoptosis by alleviation of proapoptotic endoplasmic reticulum (ER) stress-signaling, but the precise molecular mechanisms of alleviation are unexplored. By unbiased microarray analysis of the ß-cell gene expression profile of insulin-producing cells exposed to glucolipotoxicity in the presence or absence of a selective HDAC3 inhibitor, we identified Enhancer of zeste homolog 2 (EZH2) as the sole target candidate. ß-Cells were protected against glucolipotoxicity-induced ER stress and apoptosis by EZH2 attenuation. Small molecule inhibitors of EZH2 histone methyltransferase activity rescued human islets from glucolipotoxicity-induced apoptosis. Moreover, EZH2 knockdown cells were protected against glucolipotoxicity-induced downregulation of the protective non-canonical Nuclear factor of kappa light polypeptide gene enhancer in B-cells (NFκB) pathway. We conclude that EZH2 deficiency protects from glucolipotoxicity-induced ER stress, apoptosis and downregulation of the non-canonical NFκB pathway, but not from insulin secretory dysfunction. The mechanism likely involves transcriptional regulation via EZH2 functioning as a methyltransferase and/or as a methylation-dependent transcription factor.


Asunto(s)
Apoptosis , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Glucosa/efectos adversos , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/patología , Lípidos/efectos adversos , Células Cultivadas , Proteína Potenciadora del Homólogo Zeste 2/genética , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Transducción de Señal , Edulcorantes/efectos adversos
12.
Diabetologia ; 62(6): 1011-1023, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30903205

RESUMEN

AIMS/HYPOTHESIS: Sodium-glucose cotransporter (SGLT) 2 inhibitors constitute a new class of glucose-lowering drugs, but they increase glucagon secretion, which may counteract their glucose-lowering effect. Previous studies using static incubation of isolated human islets or the glucagon-secreting cell line α-TC1 suggested that this results from direct inhibition of alpha cell SGLT1/2-activity. The aim of this study was to test whether the effects of SGLT2 on glucagon secretion demonstrated in vitro could be reproduced in a more physiological setting. METHODS: We explored the effect of SGLT2 activity on glucagon secretion using isolated perfused rat pancreas, a physiological model for glucagon secretion. Furthermore, we investigated Slc5a2 (the gene encoding SGLT2) expression in rat islets as well as in mouse and human islets and in mouse and human alpha, beta and delta cells to test for potential inter-species variations. SGLT2 protein content was also investigated in mouse, rat and human islets. RESULTS: Glucagon output decreased three- to fivefold within minutes of shifting from low (3.5 mmol/l) to high (10 mmol/l) glucose (4.0 ± 0.5 pmol/15 min vs 1.3 ± 0.3 pmol/15 min, p < 0.05). The output was unaffected by inhibition of SGLT1/2 with dapagliflozin or phloridzin or by addition of the SGLT1/2 substrate α-methylglucopyranoside, whether at low or high glucose concentrations (p = 0.29-0.99). Insulin and somatostatin secretion (potential paracrine regulators) was also unaffected. Slc5a2 expression and SGLT2 protein were marginal or below detection limit in rat, mouse and human islets and in mouse and human alpha, beta and delta cells. CONCLUSIONS/INTERPRETATION: Our combined data show that increased plasma glucagon during SGLT2 inhibitor treatment is unlikely to result from direct inhibition of SGLT2 in alpha cells, but instead may occur downstream of their blood glucose-lowering effects.


Asunto(s)
Islotes Pancreáticos/metabolismo , Páncreas/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Animales , Western Blotting , Pollos , Femenino , Glucagón/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Masculino , Ratones , Ratas , Ratas Wistar , Transportador 1 de Sodio-Glucosa/genética , Transportador 1 de Sodio-Glucosa/metabolismo , Transportador 2 de Sodio-Glucosa/genética , Somatostatina/metabolismo
13.
J Biol Chem ; 293(37): 14224-14236, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30006351

RESUMEN

Obesity and the metabolic syndrome are characterized by chronic, low-grade inflammation mainly originating from expanding adipose tissue and resulting in inhibition of insulin signaling and disruption of glycemic control. Transgenic mice expressing human interleukin 37 (IL-37), an anti-inflammatory cytokine of the IL-1 family, are protected against metabolic syndrome when fed a high-fat diet (HFD) containing 45% fat. Here, we examined whether treatment with recombinant IL-37 ameliorates established insulin resistance and obesity-induced inflammation. WT mice were fed a HFD for 22 weeks and then treated daily with IL-37 (1 µg/mouse) during the last 2 weeks. Compared with vehicle only-treated mice, IL-37-treated mice exhibited reduced insulin in the plasma and had significant improvements in glucose tolerance and in insulin content of the islets. The IL-37 treatment also increased the levels of circulating IL-1 receptor antagonist. Cultured adipose tissues revealed that IL-37 treatment significantly decreases spontaneous secretions of IL-1ß, tumor necrosis factor α (TNFα), and CXC motif chemokine ligand 1 (CXCL-1). We also fed mice a 60% fat diet with concomitant daily IL-37 for 2 weeks and observed decreased secretion of IL-1ß, TNFα, and IL-6 and reduced intracellular levels of IL-1α in the liver and adipose tissue, along with improved plasma glucose clearance. Compared with vehicle treatment, these IL-37-treated mice had no apparent weight gain. In human adipose tissue cultures, the presence of 50 pm IL-37 reduced spontaneous release of TNFα and 50% of lipopolysaccharide-induced TNFα. These findings indicate that IL-37's anti-inflammatory effects can ameliorate established metabolic disturbances during obesity.


Asunto(s)
Tejido Adiposo/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Resistencia a la Insulina , Interleucina-1/uso terapéutico , Síndrome Metabólico/tratamiento farmacológico , Obesidad/fisiopatología , Animales , Biomarcadores/sangre , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Humanos , Interleucina-1/genética , Síndrome Metabólico/metabolismo , Síndrome Metabólico/fisiopatología , Ratones , Ratones Transgénicos , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapéutico
14.
Diabetologia ; 61(2): 389-398, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030662

RESUMEN

AIM/HYPOTHESIS: Combination therapy targeting the major actors involved in the immune-mediated destruction of pancreatic beta cells appears to be an indispensable approach to treat type 1 diabetes effectively. We hypothesised that the combination of an orally active pan-histone deacetylase inhibitor (HDACi: givinostat) with subtherapeutic doses of CD3 antibodies may provide ideal synergy to treat ongoing autoimmunity. METHODS: NOD mice transgenic for the human CD3ε (also known as CD3E) chain (NOD-huCD3ε) were treated for recent-onset diabetes with oral givinostat, subtherapeutic doses of humanised CD3 antibodies (otelixizumab, 50 µg/day, 5 days, i.v.) or a combination of both drugs. Disease remission, metabolic profiles and autoreactive T cell responses were analysed in treated mice. RESULTS: We demonstrated that givinostat synergised with otelixizumab to induce durable remission of diabetes in 80% of recently diabetic NOD-huCD3ε mice. Remission was obtained in only 47% of mice treated with otelixizumab alone. Oral givinostat monotherapy did not reverse established diabetes but reduced the in situ production of inflammatory cytokines (IL-1ß, IL-6, TNF-α). Importantly, the otelixizumab + givinostat combination strongly improved the metabolic status of NOD-huCD3ε mice; the mice recovered the capacity to appropriately produce insulin, control hyperglycaemia and sustain glucose tolerance. Finally, diabetes remission induced by the combination therapy was associated with a significant reduction of insulitis and autoantigen-specific CD8+ T cell responses. CONCLUSIONS/INTERPRETATION: HDACi and low-dose CD3 antibodies synergised to abrogate in situ inflammation and thereby improved pancreatic beta cell survival and metabolic function leading to long-lasting diabetes remission. These results support the therapeutic potential of protocols combining these two drugs, both in clinical development, to restore self-tolerance and insulin independence in type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Inmunoterapia/métodos , Células Secretoras de Insulina/metabolismo , Linfocitos T/fisiología , Administración Oral , Animales , Anticuerpos Monoclonales Humanizados/uso terapéutico , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Citometría de Flujo , Inhibidores de Histona Desacetilasas/sangre , Células Secretoras de Insulina/efectos de los fármacos , Interferón gamma/sangre , Interleucina-10/sangre , Interleucina-1beta/sangre , Interleucina-6/sangre , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Factor de Necrosis Tumoral alfa/sangre
15.
Clin Chem ; 64(2): 374-385, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29038157

RESUMEN

BACKGROUND: It is unknown why increased plasma ferritin concentration predicts all-cause mortality. As low-grade inflammation and increased plasma ferritin concentration are associated with all-cause mortality, we hypothesized that increased plasma ferritin concentration is genetically associated with low-grade inflammation. METHODS: We investigated whether increased plasma ferritin concentration is associated with low-grade inflammation [i.e., increased concentrations of C-reactive protein (CRP) and complement component 3 (C3)] in 62537 individuals from the Danish general population. We also applied a Mendelian randomization approach, using the hemochromatosis genotype C282Y/C282Y as an instrument for increased plasma ferritin concentration, to assess causality. RESULTS: For a doubling in plasma ferritin concentration, the odds ratio (95% CI) for CRP ≥2 vs <2 mg/L was 1.12 (1.09-1.16), with a corresponding genetic estimate for C282Y/C282Y of 1.03 (1.01-1.06). For a doubling in plasma ferritin concentration, odds ratio (95% CI) for complement C3 >1.04 vs ≤1.04 g/L was 1.28 (1.21-1.35), and the corresponding genetic estimate for C282Y/C282Y was 1.06 (1.03-1.12). Mediation analyses showed that 74% (95% CI, 24-123) of the association of C282Y/C282Y with risk of increased CRP and 56% (17%-96%) of the association of C282Y/C282Y with risk of increased complement C3 were mediated through plasma ferritin concentration. CONCLUSIONS: Increased plasma ferritin concentration as a marker of increased iron concentration is associated observationally and genetically with low-grade inflammation, possibly indicating a causal relationship from increased ferritin to inflammation. However, as HFE may also play an immunological role indicating pleiotropy and as incomplete penetrance of C282Y/C282Y indicates buffering mechanisms, these weaknesses in the study design could bias the genetic estimates.


Asunto(s)
Ferritinas/sangre , Inflamación/sangre , Adulto , Anciano , Proteína C-Reactiva/metabolismo , Complemento C3/metabolismo , Dinamarca , Femenino , Genotipo , Proteína de la Hemocromatosis/genética , Humanos , Inflamación/genética , Masculino , Persona de Mediana Edad , Distribución Aleatoria
16.
Eur J Immunol ; 46(4): 1030-46, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26692253

RESUMEN

It was hypothesized that IL-1 antagonism would preserve ß-cell function in new onset Type 1 diabetes (T1D). However, the Anti-Interleukin-1 in Diabetes Action (AIDA) and TrialNet Canakinumab (TN-14) trials failed to show efficacy of IL-1 receptor antagonist (IL-1Ra) or canakinumab, as measured by stimulated C-peptide response. Additional measures are needed to define immune state changes associated with therapeutic responses. Here, we studied these trial participants with plasma-induced transcriptional analysis. In blinded analyses, 70.2% of AIDA and 68.9% of TN-14 participants were correctly called to their treatment arm. While the transcriptional signatures from the two trials were distinct, both therapies achieved varying immunomodulation consistent with IL-1 inhibition. On average, IL-1 antagonism resulted in modest normalization relative to healthy controls. At endpoint, signatures were quantified using a gene ontology-based inflammatory index, and an inverse relationship was observed between measured inflammation and stimulated C-peptide response in IL-1Ra- and canakinumab-treated patients. Cytokine neutralization studies showed that IL-1α and IL-1ß additively contribute to the T1D inflammatory state. Finally, analyses of baseline signatures were indicative of later therapeutic response. Despite the absence of clinical efficacy by IL-1 antagonist therapy, transcriptional analysis detected immunomodulation and may yield new insight when applied to other clinical trials.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inflamación/inmunología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Interleucina-1alfa/inmunología , Interleucina-1beta/antagonistas & inhibidores , Adulto , Anticuerpos Monoclonales Humanizados , Células Cultivadas , Diabetes Mellitus Tipo 1/inmunología , Humanos , Inmunoterapia/métodos , Células Secretoras de Insulina/fisiología , Interleucina-1beta/inmunología , Masculino
17.
Annu Rev Nutr ; 36: 241-73, 2016 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-27146016

RESUMEN

Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.


Asunto(s)
Diabetes Mellitus/prevención & control , Medicina Basada en la Evidencia , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Hierro de la Dieta/uso terapéutico , Estrés Oxidativo , Inmunidad Adaptativa , Animales , Apoptosis , Diabetes Mellitus/etiología , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Suplementos Dietéticos/efectos adversos , Microbioma Gastrointestinal/inmunología , Homeostasis , Humanos , Hipotálamo/inmunología , Hipotálamo/metabolismo , Inmunidad Innata , Secreción de Insulina , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/patología , Sobrecarga de Hierro/inmunología , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/fisiopatología , Hierro de la Dieta/efectos adversos , Hierro de la Dieta/metabolismo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(3): 1055-9, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24395784

RESUMEN

Type 1 diabetes is due to destruction of pancreatic ß-cells. Lysine deacetylase inhibitors (KDACi) protect ß-cells from inflammatory destruction in vitro and are promising immunomodulators. Here we demonstrate that the clinically well-tolerated KDACi vorinostat and givinostat revert diabetes in the nonobese diabetic (NOD) mouse model of type 1 diabetes and counteract inflammatory target cell damage by a mechanism of action consistent with transcription factor--rather than global chromatin--hyperacetylation. Weaning NOD mice received low doses of vorinostat and givinostat in their drinking water until 100-120 d of age. Diabetes incidence was reduced by 38% and 45%, respectively, there was a 15% increase in the percentage of islets without infiltration, and pancreatic insulin content increased by 200%. Vorinostat treatment increased the frequency of functional regulatory T-cell subsets and their transcription factors Gata3 and FoxP3 in parallel to a decrease in inflammatory dendritic cell subsets and their cytokines IL-6, IL-12, and TNF-α. KDACi also inhibited LPS-induced Cox-2 expression in peritoneal macrophages from C57BL/6 and NOD mice. In insulin-producing ß-cells, givinostat did not upregulate expression of the anti-inflammatory genes Socs1-3 or sirtuin-1 but reduced levels of IL-1ß + IFN-γ-induced proinflammatory Il1a, Il1b, Tnfα, Fas, Cxcl2, and reduced cytokine-induced ERK phosphorylation. Further, NF-κB genomic iNos promoter binding was reduced by 50%, and NF-κB-dependent mRNA expression was blocked. These effects were associated with NF-κB subunit p65 hyperacetylation. Taken together, these data provide a rationale for clinical trials of safety and efficacy of KDACi in patients with autoimmune disease such as type 1 diabetes.


Asunto(s)
Cromatina/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Células Secretoras de Insulina/citología , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Femenino , Factor de Transcripción GATA3/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Inflamación , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Procesamiento Proteico-Postraduccional , Ratas , Factores de Tiempo , Vorinostat
20.
Diabetes Metab Res Rev ; 32(4): 334-49, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26418758

RESUMEN

In the last decade, there has been an explosion in both the number of and knowledge about miRNAs associated with both type 1 and type 2 diabetes. Even though we are presently in the initial stages of understanding how this novel class of posttranscriptional regulators are involved in diabetes, recent studies have demonstrated that miRNAs are important regulators of the islet transcriptome, controlling apoptosis, differentiation and proliferation, as well as regulating unique islet and beta-cell functions and pathways such as insulin expression, processing and secretion. Furthermore, a large number of miRNAs have been linked to diabetogenic processes induced by elevated levels of glucose, free fatty acids and inflammatory cytokines. Thus, miRNAs are novel therapeutic targets with the potential of protecting the beta-cell, and there is proof of principle that miRNA antagonists, so-called antagomirs, are effective in vivo for other disorders. miRNAs are exported out of cells in exosomes, raising the intriguing possibility of cell-to-cell communication between distant tissues via miRNAs and that miRNAs can be used as biomarkers of beta-cell function, mass and survival. The purpose of this review is to provide a status on how miRNAs control beta-cell function and viability in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Regulación de la Expresión Génica , Células Secretoras de Insulina/patología , MicroARNs/fisiología , Animales , Biomarcadores , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA