Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 93(13): 5403-5411, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33769036

RESUMEN

Precise optical rotation measurements play an important role in the analysis of chiral molecules in various fields, especially in biological chemistry and pharmacology. In this paper, we demonstrate a new variant of continuous-wave cavity-enhanced polarimetry for detecting the optical activity of two enantiomers of a chiral molecule at 730 nm. It is based on a signal-reversing technique for which the chiral specific rotation is directly determined by the cavity ring-down signal from two counter-propagating beams in a bow-tie cavity. In particular, we ensure reproducible excitation of both modes by broadening the linewidth of a diode laser source by application of a radio frequency perturbation to its injection current. The performance of the polarimeter is demonstrated for the specific rotation of (+)- and (-)-α-pinene in different environments, including the pure vapor, open air, and the liquid phase; the detection precision ranges between 10-5 and 10-4 degrees per cavity pass depending on the environment. The apparatus is a robust and practical tool for quantifying chirality and can be developed for the entire visible and near-infrared spectral regions.

2.
Opt Express ; 29(19): 30114-30122, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34614741

RESUMEN

We present precise optical rotation measurements of gaseous chiral samples using near-IR continuous-wave cavity-enhanced polarimetry. Optical rotation is determined by comparing cavity ring-down signals for two counter-propagating beams of orthogonal polarisation which are subject to polarisation rotation by the presence of both an optically active sample and a magneto-optic crystal. A broadband RF noise source applied to the laser drive current is used to tune the laser linewidth and optimise the polarimeter, and this noise-induced laser linewidth is quantified using self-heterodyne beat-note detection. We demonstrate the optical rotation measurement of gas phase samples of enantiomers of α-pinene and limonene with an optimum detection precision of 10 µdeg per cavity pass and an uncertainty in the specific rotation of ∼0.1 deg dm-1 (g/ml)-1 and determine the specific rotation parameters at 730 nm, for (+)- and (-)-α-pinene to be 32.10 ± 0.13 and -32.21 ± 0.11 deg dm-1 (g/ml)-1, respectively. Measurements of both a pure R-(+)-limonene sample and a non-racemic mixture of limonene of unknown enantiomeric excess are also presented, illustrating the utility of the technique.

3.
J Chem Phys ; 151(12): 124202, 2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31575168

RESUMEN

Cavity ring-down spectroscopy (CRDS) is a well-established, highly sensitive absorption technique whose sensitivity and selectivity for trace radical sensing can be further enhanced by measuring the polarization rotation of the intracavity light by the paramagnetic samples in the presence of a magnetic field. In this paper, we highlight the use of this Faraday rotation cavity ring-down spectroscopy (FR-CRDS) for the detection of HO2 radicals. In particular, we use a cold atmospheric pressure plasma jet as a highly efficient source of HO2 radicals and show that FR-CRDS in the near-infrared spectral region (1506 nm) has the potential to be a useful tool for studying radical chemistry. By simultaneously measuring ring-down times of orthogonal linearly polarized light, measurements of Faraday effect-induced rotation angles (θ) and absorption coefficients (α) are retrieved from the same data set. The Faraday rotation measurement exhibits better long-term stability and enhanced sensitivity due to its differential nature, whereby highly correlated noise between the two channels and slow drifts cancel out. The bandwidth-normalized sensitivities are αmin=2.2×10-11 cm-1 Hz-1/2 and θmin=0.62 nrad Hz-1/2. The latter corresponds to a minimum detectable (circular) birefringence of Δnmin=5×10-16 Hz-1/2. Using the overlapping qQ3(N = 4-9) transitions of HO2, we estimate limits of detection of 3.1 × 108 cm-3 based on traditional (absorption) CRDS methods and 6.7 × 107 cm-3 using FR-CRDS detection, where each point of the spectrum was acquired during 2 s. In addition, Verdet constants for pertinent carrier (He, Ar) and bulk (N2, O2) gases were recorded in this spectral region for the first time. These show good agreement with recent measurements of air and values extrapolated from reported Verdet constants at shorter wavelengths, demonstrating the potential of FR-CRDS for measurements of very weak Faraday effects and providing a quantitative validation to the computed rotation angles.

4.
Anal Chem ; 89(1): 902-909, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936594

RESUMEN

Optical-feedback cavity-enhanced absorption spectroscopy (OF-CEAS) using mid-infrared interband cascade lasers (ICLs) is a sensitive technique for trace gas sensing. The setup of a V-shaped optical cavity operating with a 3.29 µm cw ICL is detailed, and a quantitative characterization of the injection efficiency, locking stability, mode matching, and detection sensitivity is presented. The experimental data are supported by a model to show how optical feedback affects the laser frequency as it is scanned across several longitudinal modes of the optical cavity. The model predicts that feedback enhancement effects under strongly absorbing conditions can cause underestimations in the measured absorption, and these predictions are verified experimentally. The technique is then used in application to the detection of nitrous oxide as an exemplar of the utility of this technique for analytical gas phase spectroscopy. The analytical performance of the spectrometer, expressed as noise equivalent absorption coefficient, was estimated as 4.9 × 10-9 cm -1 Hz-1/2, which compares well with recently reported values.

5.
Opt Lett ; 39(24): 6811-4, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25503003

RESUMEN

The sensitivity of mid-IR quantum cascade laser (QCL) off-axis cavity-enhanced absorption spectroscopy (CEAS), often limited by cavity mode structure and diffraction losses, was enhanced by applying a broadband RF noise to the laser current. A pump-probe measurement demonstrated that the addition of bandwidth-limited white noise effectively increased the laser linewidth, thereby reducing mode structure associated with CEAS. The broadband noise source offers a more sensitive, more robust alternative to applying single-frequency noise to the laser. Analysis of CEAS measurements of a CO(2) absorption feature at 1890 cm(-1) averaged over 100 ms yielded a minimum detectable absorption of 5.5×10(-3) Hz(-1/2) in the presence of broadband RF perturbation, nearly a tenfold improvement over the unperturbed regime. The short acquisition time makes this technique suitable for breath applications requiring breath-by-breath gas concentration information.


Asunto(s)
Absorción Fisicoquímica , Rayos Infrarrojos , Rayos Láser , Análisis Espectral
6.
J Phys Chem A ; 116(33): 8547-56, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22856537

RESUMEN

The ability of two techniques, aerosol cavity ring down spectroscopy (A-CRDS) and optical tweezers, to retrieve the refractive index of atmospherically relevant aerosol was compared through analysis of supersaturated sodium nitrate at a range of relative humidities. Accumulation mode particles in the diameter range 300-600 nm were probed using A-CRDS, with optical tweezer measurements performed on coarse mode particles several micrometers in diameter. A correction for doubly charged particles was applied in the A-CRDS measurements. Both techniques were found to retrieve refractive indices in good agreement with previously published results from Tang and Munkelwitz, with a precision of ±0.0012 for the optical tweezers and ±0.02 for the A-CRDS technique. The coarse mode optical tweezer measurements agreed most closely with refractive index predictions made using a mass-weighted linear mixing rule. The uncertainty in the refractive index retrieved by the A-CRDS technique prevented discrimination between predictions using both mass-weighted and volume-weighted linear mixing rules. No efflorescence or kinetic limitations on water transport between the particle and the gas phase were observed at relative humidities down to 14%. The magnitude of the uncertainty in refractive index retrieved using the A-CRDS technique reflects the challenges in determining particle optical properties in the accumulation mode, where the extinction efficiency varies steeply with particle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA