Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Mol Life Sci ; 79(8): 446, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35876890

RESUMEN

Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
2.
J Biol Chem ; 296: 100569, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33753167

RESUMEN

The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1), the main AP-endonuclease of the DNA base excision repair pathway, is a key molecule of interest to researchers due to its unsuspected roles in different nonrepair activities, such as: i) adaptive cell response to genotoxic stress, ii) regulation of gene expression, and iii) processing of microRNAs, which make it an excellent drug target for cancer treatment. We and others recently demonstrated that APE1 can be secreted in the extracellular environment and that serum APE1 may represent a novel prognostic biomarker in hepatocellular and non-small-cell lung cancers. However, the mechanism by which APE1 is released extracellularly was not described before. Here, using three different approaches for exosomes isolation: commercial kit, nickel-based isolation, and ultracentrifugation methods and various mammalian cell lines, we elucidated the mechanisms responsible for APE1 secretion. We demonstrated that APE1 p37 and p33 forms are actively secreted through extracellular vesicles (EVs), including exosomes from different mammalian cell lines. We then observed that APE1 p33 form is generated by proteasomal-mediated degradation and is enzymatically active in EVs. Finally, we revealed that the p33 form of APE1 accumulates in EVs upon genotoxic treatment by cisplatin and doxorubicin, compounds commonly found in chemotherapy pharmacological treatments. Taken together, these findings provide for the first time evidence that a functional Base Excision Repair protein is delivered through exosomes in response to genotoxic stresses, shedding new light into the complex noncanonical biological functions of APE1 and opening new intriguing perspectives on its role in cancer biology.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Exosomas/enzimología , Animales , Línea Celular , Reparación del ADN , Humanos
3.
Mutagenesis ; 35(1): 129-149, 2020 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-31858150

RESUMEN

Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.


Asunto(s)
Enzimas Reparadoras del ADN/fisiología , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Neoplasias/enzimología , ADN/metabolismo , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología
4.
Genes Chromosomes Cancer ; 55(11): 864-76, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27295426

RESUMEN

Telomeres are specialized structures responsible for the chromosome end protection. Previous studies have revealed that defective BRCA1 may lead to elevated telomere fusions and accelerated telomere shortening. In addition, BRCA1 associates with promyelocytic leukemia (PML) bodies in alternative lengthening of telomeres (ALTs) positive cells. We report here elevated recombination rates at telomeres in cells from human BRCA1 mutation carriers and in mouse embryonic stem cells lacking both copies of functional Brca1. An increased recombination rate at telomeres is one of the signs of ALT. To investigate this possibility further we employed the C-circle assay that identifies ALT unequivocally. Our results revealed elevated levels of ALT activity in Brca1 defective mouse cells. Similar results were obtained when the same cells were assayed for the presence of another ALT marker, namely the frequency of PML bodies. These results suggest that BRCA1 may act as a repressor of ALT. © 2016 The Authors Genes, Chromosomes & Cancer Published by Wiley Periodicals, Inc.


Asunto(s)
Proteína BRCA1/genética , Leucemia Promielocítica Aguda/genética , Homeostasis del Telómero/genética , Telómero/genética , Animales , Línea Celular Tumoral , Humanos , Leucemia Promielocítica Aguda/patología , Ratones , Células Madre Embrionarias de Ratones/patología , Mutación , Recombinación Genética , Telomerasa/genética
5.
Oncogene ; 43(24): 1861-1876, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38664500

RESUMEN

The base excision repair (BER) Apurinic/apyrimidinic endonuclease 1 (APE1) enzyme is endowed with several non-repair activities including miRNAs processing. APE1 is overexpressed in many cancers but its causal role in the tumorigenic processes is largely unknown. We recently described that APE1 can be actively secreted by mammalian cells through exosomes. However, APE1 role in EVs or exosomes is still unknown, especially regarding a putative regulatory function on vesicular small non-coding RNAs. Through dedicated transcriptomic analysis on cellular and vesicular small RNAs of different APE1-depleted cancer cell lines, we found that miRNAs loading into EVs is a regulated process, dependent on APE1, distinctly conveying RNA subsets into vesicles. We identified APE1-dependent secreted miRNAs characterized by enriched sequence motifs and possible binding sites for APE1. In 33 out of 34 APE1-dependent-miRNA precursors, we surprisingly found EXO-motifs and proved that APE1 cooperates with hnRNPA2B1 for the EV-sorting of a subset of miRNAs, including miR-1246, through direct binding to GGAG stretches. Using TCGA-datasets, we showed that these miRNAs identify a signature with high prognostic significance in cancer. In summary, we provided evidence that the ubiquitous DNA-repair enzyme APE1 is part of the EV protein cargo with a novel post-transcriptional role for this ubiquitous DNA-repair enzyme that could explain its role in cancer progression. These findings could open new translational perspectives in cancer biology.


Asunto(s)
Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , MicroARNs , Humanos , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico , Reparación del ADN/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Exosomas/metabolismo , Exosomas/genética , Línea Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Regulación Neoplásica de la Expresión Génica
6.
J Clin Transl Hepatol ; 11(6): 1291-1307, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37719963

RESUMEN

Background and Aims: Identification of prognostic factors for hepatocellular carcinoma (HCC) opens new perspectives for therapy. Circulating and cellular onco-miRNAs are noncoding RNAs which can control the expression of genes involved in oncogenesis through post-transcriptional mechanisms. These microRNAs (miRNAs) are considered novel prognostic and predictive factors in HCC. The apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) contributes to the quality control and processing of specific onco-miRNAs and is a negative prognostic factor in several tumors. The present work aims to: a) define APE1 prognostic value in HCC; b) identify miRNAs regulated by APE1 and their relative target genes and c) study their prognostic value. Methods: We used The Cancer Genome Atlas (commonly known as TCGA) data analysis to evaluate the expression of APE1 in HCC. To identify differentially-expressed miRNAs (DEmiRNAs) upon APE1 depletion through specific small interfering RNA, we used NGS and nanostring approaches in the JHH-6 HCC tumor cell line. Bioinformatics analyses were performed to identify signaling pathways involving APE1-regulated miRNAs. Microarray analysis was performed to identify miRNAs correlating with serum APE1 expression. Results: APE1 is considerably overexpressed in HCC tissues compared to normal liver, according to the TCGA-liver HCC (known as LIHC) dataset. Enrichment analyses showed that APE1-regulated miRNAs are implicated in signaling and metabolic pathways linked to cell proliferation, transformation, and angiogenesis, identifying Cyclin Dependent Kinase 6 and Lysosomal Associated Membrane Protein 2 as targets. miR-33a-5p, miR-769, and miR-877 are related to lower overall survival in HCC patients. Through array profiling, we identified eight circulating DE-miRNAs associated with APE1 overexpression. A training phase identified positive association between sAPE1 and miR-3180-3p and miR-769. Conclusions: APE1 regulates specific miRNAs having prognostic value in HCC.

7.
Sci Rep ; 10(1): 28, 2020 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-31913336

RESUMEN

APE1 is essential in cancer cells due to its central role in the Base Excision Repair pathway of DNA lesions and in the transcriptional regulation of genes involved in tumor progression/chemoresistance. Indeed, APE1 overexpression correlates with chemoresistance in more aggressive cancers, and APE1 protein-protein interactions (PPIs) specifically modulate different protein functions in cancer cells. Although important, a detailed investigation on the nature and function of protein interactors regulating APE1 role in tumor progression and chemoresistance is still lacking. The present work was aimed at analyzing the APE1-PPI network with the goal of defining bad prognosis signatures through systematic bioinformatics analysis. By using a well-characterized HeLa cell model stably expressing a flagged APE1 form, which was subjected to extensive proteomics analyses for immunocaptured complexes from different subcellular compartments, we here demonstrate that APE1 is a central hub connecting different subnetworks largely composed of proteins belonging to cancer-associated communities and/or involved in RNA- and DNA-metabolism. When we performed survival analysis in real cancer datasets, we observed that more than 80% of these APE1-PPI network elements is associated with bad prognosis. Our findings, which are hypothesis generating, strongly support the possibility to infer APE1-interactomic signatures associated with bad prognosis of different cancers; they will be of general interest for the future definition of novel predictive disease biomarkers. Future studies will be needed to assess the function of APE1 in the protein complexes we discovered. Data are available via ProteomeXchange with identifier PXD013368.


Asunto(s)
Biomarcadores de Tumor/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Neoplasias/patología , Mapas de Interacción de Proteínas , Biomarcadores de Tumor/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Conjuntos de Datos como Asunto , Células HeLa , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Pronóstico , Tasa de Supervivencia
8.
Oncogenesis ; 9(1): 5, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001675

RESUMEN

Adenoid cystic carcinoma (ACC) is a rare cancer that preferentially occurs in the head and neck, breast, as well as in other sites. It is an aggressive cancer with high rates of recurrence and distant metastasis. Patients with advanced disease are generally incurable due to the lack of effective systemic therapies. Activation of the master transcriptional regulator MYB is the genomic hallmark of ACC. MYB activation occurs through chromosomal translocation, copy number gain or enhancer hijacking, and is the key driving event in the pathogenesis of ACC. However, the functional consequences of alternative mechanisms of MYB activation are still uncertain. Here, we show that overexpression of MYB or MYB-NFIB fusions leads to transformation of human glandular epithelial cells in vitro and results in analogous cellular and molecular consequences. MYB and MYB-NFIB expression led to increased cell proliferation and upregulation of genes involved in cell cycle control, DNA replication, and DNA repair. Notably, we identified the DNA-damage sensor kinase ATR, as a MYB downstream therapeutic target that is overexpressed in primary ACCs and ACC patient-derived xenografts (PDXs). Treatment with the clinical ATR kinase inhibitor VX-970 induced apoptosis in MYB-positive ACC cells and growth inhibition in ACC PDXs. To our knowledge, ATR is the first example of an actionable target downstream of MYB that could be further exploited for therapeutic opportunities in ACC patients. Our findings may also have implications for other types of neoplasms with activation of the MYB oncogene.

9.
Oncotarget ; 10(3): 383-394, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30719231

RESUMEN

Late diagnosis for Hepatocellular Carcinoma (HCC) remains one of the leading causes for the high mortality rate. The apurinic/apyrimidinic endonuclease 1 (APE1), an essential member of the base excision DNA repair (BER) pathway, contributes to cell response to oxidative stress and has other non-repair activities. In this study, we evaluate the role of serum APE1 (sAPE1) as a new diagnostic biomarker and we investigate the biological role for extracellular APE1 in HCC. sAPE1 level was quantified in 99 HCC patients, 50 non-HCC cirrhotic and 100 healthy controls. The expression level was significantly high in HCC (75.8 [67.3-87.9] pg/mL) compared to cirrhosis (29.8 [18.3-36.5] pg/mL] and controls (10.8 [7.5-13.2] pg/mL) (p < 0.001). The sAPE1 level corresponded with its protein expression in HCC tissue. sAPE1 had high diagnostic accuracy to differentiate HCC from cirrhotic (AUC = 0.87, sensitivity 88%, specificity 71%, cut-off of 36.3 pg/mL) and healthy subjects (AUC 0.98, sensibility 98% and specificity 83%, cut-off of 19.0 pg/mL). Recombinant APE1, exogenously added to JHH6 cells, significantly promotes IL-6 and IL-8 expression, suggesting a role of sAPE1 as a paracrine pro-inflammatory molecule, which may modulate the inflammatory status in cancer microenvironment. We described herein, for the first time to our knowledge, that sAPE1 might be considered as a promising diagnostic biomarker for HCC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA