RESUMEN
In eukaryotic cells, membrane-bound vesicles carry cargo between intracellular compartments, to and from the cell surface, and into the extracellular environment. Many conserved families of proteins are required for properly localized vesicle fusion, including the multisubunit tethering complexes and the SNARE complexes. These protein complexes work together to promote proper vesicle fusion in intracellular trafficking pathways. However, the mechanism by which the exocyst, the exocytosis-specific multisubunit tethering complex, interacts with the exocytic SNAREs to mediate vesicle targeting and fusion is currently unknown. We have demonstrated previously that the Saccharomyces cerevisiae exocyst subunit Sec6 directly bound the plasma membrane SNARE protein Sec9 in vitro and that Sec6 inhibited the assembly of the binary Sso1-Sec9 SNARE complex. Therefore, we hypothesized that the interaction between Sec6 and Sec9 prevented the assembly of premature SNARE complexes at sites of exocytosis. To map the determinants of this interaction, we used cross-linking and mass spectrometry analyses to identify residues required for binding. Mutation of residues identified by this approach resulted in a growth defect when introduced into yeast. Contrary to our previous hypothesis, we discovered that Sec6 does not change the rate of SNARE assembly but, rather, binds both the binary Sec9-Sso1 and ternary Sec9-Sso1-Snc2 SNARE complexes. Together, these results suggest a new model in which Sec6 promotes SNARE complex assembly, similar to the role proposed for other tether subunit-SNARE interactions.
Asunto(s)
Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sitios de Unión , Cromatografía en Gel , Unión ProteicaRESUMEN
Mutations and aberrant post-translational modifications within Cu,Zn-superoxide dismutase (SOD1) cause this otherwise protective enzyme to misfold, leading to amyotrophic lateral sclerosis (ALS). The C4F6 antibody selectively binds misfolded SOD1 in spinal cord tissues from postmortem human ALS cases, as well as from an ALS-SOD1 mouse model, suggesting that the C4F6 epitope reports on a pathogenic conformation that is common to misfolded SOD1 variants. To date, the residues and structural elements that comprise this epitope have not been elucidated. Using a chemical cross-linking and mass spectrometry approach, we identified the C4F6 epitope within several ALS-linked SOD1 variants, as well as an oxidized form of WT SOD1, supporting the notion that a similar misfolded conformation is shared among pathological SOD1 proteins. Exposure of the C4F6 epitope was modulated by the SOD1 electrostatic (loop VII) and zinc binding (loop IV) loops and correlated with SOD1-induced toxicity in a primary microglia activation assay. Site-directed mutagenesis revealed Asp(92) and Asp(96) as key residues within the C4F6 epitope required for the SOD1-C4F6 binding interaction. We propose that stabilizing the functional loops within SOD1 and/or obscuring the C4F6 epitope are viable therapeutic strategies for treating SOD1-mediated ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Epítopos/química , Superóxido Dismutasa/química , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Epítopos/genética , Epítopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Hibridomas/inmunología , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Isoenzimas/toxicidad , Ratones , Microglía/citología , Microglía/efectos de los fármacos , Microglía/metabolismo , Mutagénesis Sitio-Dirigida , Mutación , Oxidación-Reducción , Cultivo Primario de Células , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Médula Espinal/química , Médula Espinal/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/toxicidad , Superóxido Dismutasa-1RESUMEN
BRCA1 promotes DNA repair through interactions with multiple proteins, including CtIP and FANCJ (also known as BRIP1/BACH1). While CtIP facilitates DNA end resection when de-acetylated, the function of FANCJ in repair processing is less well defined. Here, we report that FANCJ is also acetylated. Preventing FANCJ acetylation at lysine 1249 does not interfere with the ability of cells to survive DNA interstrand crosslinks (ICLs). However, resistance is achieved with reduced reliance on recombination. Mechanistically, FANCJ acetylation facilitates DNA end processing required for repair and checkpoint signaling. This conclusion was based on the finding that FANCJ and its acetylation were required for robust RPA foci formation, RPA phosphorylation, and Rad51 foci formation in response to camptothecin (CPT). Furthermore, both preventing and mimicking FANCJ acetylation at lysine 1249 disrupts FANCJ function in checkpoint maintenance. Thus, we propose that the dynamic regulation of FANCJ acetylation is critical for robust DNA damage response, recombination-based processing, and ultimately checkpoint maintenance.
Asunto(s)
Acetilación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Daño del ADN/genética , ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi , Lisina/metabolismo , Proteína BRCA1/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , ADN/genética , ADN/metabolismo , Reparación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Recombinación Homóloga , Humanos , MutaciónRESUMEN
The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.
Asunto(s)
Proteínas Bacterianas/metabolismo , Inmunidad Innata , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Serina O-Acetiltransferasa/metabolismo , Yersinia pestis/enzimología , Acetilación , Animales , Proteínas Bacterianas/inmunología , Drosophila melanogaster , Células HEK293 , Humanos , Quinasas Quinasa Quinasa PAM/inmunología , FN-kappa B/inmunología , FN-kappa B/metabolismo , Peste/inmunología , Peste/metabolismo , Serina O-Acetiltransferasa/inmunología , Yersinia pestis/inmunología , Yersinia pestis/patogenicidadRESUMEN
Procedures are detailed for a quantitative release of O-linked glycans from peptides that now provide a shorter reaction time, a possible identification of O-linked sites, and a quantification of all reaction products. The release was initiated by a mild base, dimethylamine, and accelerated by microwave radiation. Differential analysis using standard glycoproteins has shown improved release efficiency concurrent with facile incorporation of dimethylamine into the former O-linked sites. In situ glycan reduction insures protection against peeling and is synchronous with subsequent studies by high performance MS(n) sequencing. The protocols were established with a synthetic O-GlcNAc peptide that would mimic the linkage chemistry and applied to a well characterized glycoprotein bovine fetuin with both N- and O-linked glycans and a highly glycosylated swine mucin.