Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Geriatr Soc ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134366

RESUMEN

BACKGROUND: The COVID-19 pandemic significantly affected the physical health of older adults around the world, causing day-to-day disruptions in routines and changes to usual patterns of mobility. Despite the passing of 2 years since vaccinations, older adults continue to experience detriments, including social isolation and reduced mobility. This study aims to understand how views of the COVID-19 pandemic are associated with life-space mobility-moving about the community. We hypothesize that endorsing stronger perspectives about the persistence of COVID-19 is correlated with reduced life-space mobility. METHODS: Survey data were collected via online questionnaire in October and November of 2022. Linear regression models were used to examine the relationship between five perspectives on the COVID-19 pandemic (e.g., agreeing that "I wish people would take COVID-19 more seriously") and life-space mobility, measured using a modified version of the life space assessment, in older adults (n = 510). Analyses were adjusted for demographic factors and mental and physical health indicators, including depressive symptoms and number of chronic conditions. RESULTS: In fully adjusted models, the study found that endorsing a stronger lingering impact of the COVID-19 pandemic across any of the five perspectives was associated with significantly lower life-space mobility. CONCLUSIONS: The results of this study show that endorsing a stronger lingering impact of the COVID-19 pandemic is associated with reduced life-space mobility, which underscores the importance of designing public health strategies that carefully balance the safety concerns of older adults with opportunities for physical activity and social interaction.

2.
Front Pain Res (Lausanne) ; 5: 1386573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015155

RESUMEN

Introduction: Chronic musculoskeletal (MSK) pain is prevalent in older adults and confers significant risk for loss of independence and low quality of life. While obesity is considered a risk factor for developing chronic MSK pain, both high and low body mass index (BMI) have been associated with greater pain reporting in older adults. Measures of body composition that distinguish between fat mass and lean mass may help to clarify the seemingly contradictory associations between BMI and MSK pain in this at-risk group. Methods: Twenty-four older adults (mean age: 78.08 ± 5.1 years) completed dual-energy x-ray absorptiometry (DEXA), and pain measures (Graded Chronic Pain Scale, number of anatomical pain sites, pressure pain threshold, mechanical temporal summation). Pearson correlations and multiple liner regression examined associations between body mass index (BMI), body composition indices, and pain. Results: Significant positive associations were found between number of pain sites and BMI (b = 0.37) and total fat mass (b = 0.42), accounting for age and sex. Total body lean mass was associated with pressure pain sensitivity (b = 0.65), suggesting greater lean mass is associated with less mechanical pain sensitivity. Discussion: The results from this exploratory pilot study indicate lean mass may provide additional resilience to maladaptive changes in pain processing in older adults, and highlights the importance of distinguishing body composition indices from overall body mass index to better understand the complex relationship between obesity and MSK pain in older adults.

3.
Pilot Feasibility Stud ; 10(1): 89, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877595

RESUMEN

BACKGROUND: Several changes occur in the central nervous system with increasing age that contribute toward declines in mobility. Neurorehabilitation has proven effective in improving motor function though achieving sustained behavioral and neuroplastic adaptations is more challenging. While effective, rehabilitation usually follows adverse health outcomes, such as injurious falls. This reactive intervention approach may be less beneficial than prevention interventions. Therefore, we propose the development of a prehabilitation intervention approach to address mobility problems before they lead to adverse health outcomes. This protocol article describes a pilot study to examine the feasibility and acceptability of a home-based, self-delivered prehabilitation intervention that combines motor imagery (mentally rehearsing motor actions without physical movement) and neuromodulation (transcranial direct current stimulation, tDCS; to the frontal lobes). A secondary objective is to examine preliminary evidence of improved mobility following the intervention. METHODS: This pilot study has a double-blind randomized controlled design. Thirty-four participants aged 70-95 who self-report having experienced a fall within the prior 12 months or have a fear of falling will be recruited. Participants will be randomly assigned to either an active or sham tDCS group for the combined tDCS and motor imagery intervention. The intervention will include six 40-min sessions delivered every other day. Participants will simultaneously practice the motor imagery tasks while receiving tDCS. Those individuals assigned to the active group will receive 20 min of 2.0-mA direct current to frontal lobes, while those in the sham group will receive 30 s of stimulation to the frontal lobes. The motor imagery practice includes six instructional videos presenting different mobility tasks related to activities of daily living. Prior to and following the intervention, participants will undergo laboratory-based mobility and cognitive assessments, questionnaires, and free-living activity monitoring. DISCUSSION: Previous studies report that home-based, self-delivered tDCS is safe and feasible for various populations, including neurotypical older adults. Additionally, research indicates that motor imagery practice can augment motor learning and performance. By assessing the feasibility (specifically, screening rate (per month), recruitment rate (per month), randomization (screen eligible who enroll), retention rate, and compliance (percent of completed intervention sessions)) and acceptability of the home-based motor imagery and tDCS intervention, this study aims to provide preliminary data for planning larger studies. TRIAL REGISTRATION: This study is registered on ClinicalTrials.gov (NCT05583578). Registered October 13, 2022. https://www. CLINICALTRIALS: gov/study/NCT05583578.

4.
J Vis Exp ; (203)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38251713

RESUMEN

Aging is associated with multiple physiological changes that contribute synergistically and independently to physical disability and the risk of chronic disease. Although the etiology of age-related physical disability is complex and multifactorial, the decline in mitochondrial function appears to coincide with the progression of functional decline in many older adults. The reason why there is a decrease in mitochondrial function with aging remains elusive, but emerging science indicates that both fuel metabolism and circadian rhythms can influence mitochondrial function. Recent studies have established that circadian rhythms become disturbed with aging, and that disrupted circadian rhythms have pathological consequences that impact mitochondrial function and overlap with many age-associated chronic diseases. Current quantitative methods for direct assessment of mitochondrial function are invasive and typically require a muscle biopsy, which can pose difficulties with participant recruitment and study adherence, given the perceived levels of potential pain and risk. Thus, an innovative and relatively noninvasive protocol to assess changes in mitochondrial function at the cellular level and circadian patterns in older adults was adapted. Specifically, a real-time metabolic flux analyzer is used to assess the mitochondrial bioenergetic function of white blood cells under differential substrate availability. The expression of circadian clock genes in white blood cells to cross-correlate with the mitochondrial bioenergetics and circadian rhythm outcomes are also analyzed. It is believed that these innovative methodological approaches will aid future clinical trials by providing minimally invasive methods for studying mitochondrial substrate preference and circadian rhythms in older adults.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Humanos , Anciano , Mitocondrias , Envejecimiento , Biopsia
5.
Educ Gerontol ; 50(4): 282-295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737621

RESUMEN

Smartwatches are a type of wearable device that enable continuous monitoring of an individual's activities and critical health metrics. As the number of older adults age 65+ continues to grow in the U.S., so does their usage of smartwatches, making it necessary to understand the real-world uptake and use of these devices to monitor health. In this study, older adults with a relatively high level of education and digital skills were provided with a smartwatch equipped with a mobile application (ROAMM) that was worn for a median of 14 days. Usability surveys were distributed, and a qualitative analysis was performed about participants' experience using the smartwatch and ROAMM application. Constructs from the Technology Acceptance Model and Consolidated Framework for Implementation Research were incorporated into in-depth interviews, which were recorded and transcribed. Data were analyzed using the constant comparative method. Interviews among 30 older adults revealed the following main themes: 1) familiarization with the device and adoption and acceptance, 2) factors encouraging usage, such as a doctor's endorsement or the appeal of tracking one's health, and 3) barriers to usage, such as insufficient education and training and the desire for additional functionality. Overall, participants found the smartwatch easy to use and were likely to continue using the device in a long-term study. Data generated from smartwatches have the potential to engage individuals about their health and could inspire them to participate more actively during clinical encounters.

6.
JBMR Plus ; 8(1): ziad002, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38690126

RESUMEN

Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility (ie, weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is DXA, which quantifies areal BMD, typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating the bone strength, a critical factor in fracture resistance. Although multifrequency vibration analysis can quickly and painlessly assay bone strength, there has been limited success in advancing a device of this nature. Recent progress has resulted in the development of Cortical Bone Mechanics Technology (CBMT), which conducts a dynamic 3-point bending test to assess the flexural rigidity (EI) of ulnar cortical bone. Data indicate that ulnar EI accurately estimates ulnar whole bone strength and provides unique and independent information about cortical bone compared to DXA-derived BMD. Consequently, CBMT has the potential to address a critical unmet need: Better identification of patients with diminished bone strength who are at high risk of experiencing a fragility fracture. However, the clinical utility of CBMT-derived EI has not yet been demonstrated. We have designed a clinical study to assess the accuracy of CBMT-derived ulnar EI in discriminating post-menopausal women who have suffered a fragility fracture from those who have not. These data will be compared to DXA-derived peripheral and central measures of BMD obtained from the same subjects. In this article, we describe the study protocol for this multi-center fracture discrimination study (The STRONGER Study).

7.
Front Aging Neurosci ; 16: 1389488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765771

RESUMEN

Introduction: Walking in complex environments increases the cognitive demand of locomotor control; however, our understanding of the neural mechanisms contributing to walking on uneven terrain is limited. We used a novel method for altering terrain unevenness on a treadmill to investigate the association between terrain unevenness and cortical activity in the prefrontal cortex, a region known to be involved in various cognitive functions. Methods: Prefrontal cortical activity was measured with functional near infrared spectroscopy while participants walked on a novel custom-made terrain treadmill surface across four different terrains: flat, low, medium, and high levels of unevenness. The assessments were conducted in younger adults, older adults with better mobility function and older adults with worse mobility function. Mobility function was assessed using the Short Physical Performance Battery. The primary hypothesis was that increasing the unevenness of the terrain would result in greater prefrontal cortical activation in all groups. Secondary hypotheses were that heightened prefrontal cortical activation would be observed in the older groups relative to the younger group, and that prefrontal cortical activation would plateau at higher levels of terrain unevenness for the older adults with worse mobility function, as predicted by the Compensation Related Utilization of Neural Circuits Hypothesis. Results: The results revealed a significant main effect of terrain, indicating a significant increase in prefrontal cortical activation with increasing terrain unevenness during walking in all groups. A significant main effect of group revealed that prefrontal cortical activation was higher in older adults with better mobility function compared to younger adults and older adults with worse mobility function in all pooled terrains, but there was no significant difference in prefrontal cortical activation between older adults with worse mobility function and younger adults. Contrary to our hypothesis, the older group with better mobility function displayed a sustained increase in activation but the other groups did not, suggestive of neural compensation. Additional findings were that task-related increases in prefrontal cortical activation during walking were lateralized to the right hemisphere in older adults with better mobility function but were bilateral in older adults with worse mobility function and younger adults. Discussion: These findings support that compared to walking on a flat surface, walking on uneven terrain surfaces increases demand on cognitive control resources as measured by prefrontal cortical activation.

8.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38766046

RESUMEN

Older adults exhibit larger individual differences in walking ability and cognitive function than young adults. Characterizing intrinsic brain connectivity differences in older adults across a wide walking performance spectrum may provide insight into the mechanisms of functional decline in some older adults and resilience in others. Thus, the objectives of this study were to: (1) determine whether young adults and high- and low-functioning older adults show group differences in brain network segregation, and (2) determine whether network segregation is associated with working memory and walking function in these groups. The analysis included 21 young adults and 81 older adults. Older adults were further categorized according to their physical function using a standardized assessment; 54 older adults had low physical function while 27 were considered high functioning. Structural and functional resting state magnetic resonance images were collected using a Siemens Prisma 3T scanner. Working memory was assessed with the NIH Toolbox list sorting test. Walking speed was assessed with a 400 m-walk test at participants' self-selected speed. We found that network segregation in mobility-related networks (sensorimotor, vestibular, and visual networks) was higher in younger adults compared to older adults. There were no group differences in laterality effects on network segregation. We found multivariate associations between working memory and walking speed with network segregation scores. Higher right anterior cingulate cortex network segregation was associated with higher working memory function. Higher right sensorimotor, right vestibular, right anterior cingulate cortex, and lower left anterior cingulate cortex network segregation was associated with faster walking speed. These results are unique and significant because they demonstrate higher network segregation is largely related to higher physical function and not age alone.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39046716

RESUMEN

BACKGROUND: ChatGPT and other ChatBots have emerged as tools for interacting with information in manners resembling natural human speech. Consequently, the technology is used across various disciplines, including business, education, and even in biomedical sciences. There is a need to better understand how ChatGPT can be used to advance gerontology research. Therefore, we evaluated ChatGPT responses to questions on specific topics in gerontology research, and brainstormed recommendations for its use in the field. METHODS: We conducted semi-structured brainstorming sessions to identify uses of ChatGPT in gerontology research. We divided a team of multidisciplinary researchers into four topical groups: a) gero-clinical science, b) basic geroscience, c) informatics as it relates to electronic health records (EHR), and d) gero-technology. Each group prompted ChatGPT on a theory-, methods-, and interpretation-based question and rated responses for accuracy and completeness based on standardized scales. RESULTS: ChatGPT responses were rated by all groups as generally accurate. However, the completeness of responses was rated lower, except by members of the informatics group, who rated responses as highly comprehensive. CONCLUSIONS: ChatGPT accurately depicts some major concepts in gerontological research. However, researchers have an important role in critically appraising the completeness of its responses. Having a single generalized resource like ChatGPT may help summarize the preponderance of evidence in the field to identify gaps in knowledge and promote cross-disciplinary collaboration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA