Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(7): 1578-1595.e8, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37329888

RESUMEN

It is currently not well known how necroptosis and necroptosis responses manifest in vivo. Here, we uncovered a molecular switch facilitating reprogramming between two alternative modes of necroptosis signaling in hepatocytes, fundamentally affecting immune responses and hepatocarcinogenesis. Concomitant necrosome and NF-κB activation in hepatocytes, which physiologically express low concentrations of receptor-interacting kinase 3 (RIPK3), did not lead to immediate cell death but forced them into a prolonged "sublethal" state with leaky membranes, functioning as secretory cells that released specific chemokines including CCL20 and MCP-1. This triggered hepatic cell proliferation as well as activation of procarcinogenic monocyte-derived macrophage cell clusters, contributing to hepatocarcinogenesis. In contrast, necrosome activation in hepatocytes with inactive NF-κB-signaling caused an accelerated execution of necroptosis, limiting alarmin release, and thereby preventing inflammation and hepatocarcinogenesis. Consistently, intratumoral NF-κB-necroptosis signatures were associated with poor prognosis in human hepatocarcinogenesis. Therefore, pharmacological reprogramming between these distinct forms of necroptosis may represent a promising strategy against hepatocellular carcinoma.


Asunto(s)
Neoplasias Hepáticas , FN-kappa B , Humanos , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Necroptosis , Inflamación/patología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
2.
Nature ; 622(7983): 627-636, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821702

RESUMEN

Senescent cells drive age-related tissue dysfunction partially through the induction of a chronic senescence-associated secretory phenotype (SASP)1. Mitochondria are major regulators of the SASP; however, the underlying mechanisms have not been elucidated2. Mitochondria are often essential for apoptosis, a cell fate distinct from cellular senescence. During apoptosis, widespread mitochondrial outer membrane permeabilization (MOMP) commits a cell to die3. Here we find that MOMP occurring in a subset of mitochondria is a feature of cellular senescence. This process, called minority MOMP (miMOMP), requires BAX and BAK macropores enabling the release of mitochondrial DNA (mtDNA) into the cytosol. Cytosolic mtDNA in turn activates the cGAS-STING pathway, a major regulator of the SASP. We find that inhibition of MOMP in vivo decreases inflammatory markers and improves healthspan in aged mice. Our results reveal that apoptosis and senescence are regulated by similar mitochondria-dependent mechanisms and that sublethal mitochondrial apoptotic stress is a major driver of the SASP. We provide proof-of-concept that inhibition of miMOMP-induced inflammation may be a therapeutic route to improve healthspan.


Asunto(s)
Apoptosis , Senescencia Celular , Citosol , ADN Mitocondrial , Mitocondrias , Animales , Ratones , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Necrosis por Permeabilidad de la Transmembrana Mitocondrial , Prueba de Estudio Conceptual , Inflamación/metabolismo , Fenotipo , Longevidad , Envejecimiento Saludable
3.
EMBO J ; 40(9): e106048, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33764576

RESUMEN

Cellular senescence is characterized by an irreversible cell cycle arrest as well as a pro-inflammatory phenotype, thought to contribute to aging and age-related diseases. Neutrophils have essential roles in inflammatory responses; however, in certain contexts their abundance is associated with a number of age-related diseases, including liver disease. The relationship between neutrophils and cellular senescence is not well understood. Here, we show that telomeres in non-immune cells are highly susceptible to oxidative damage caused by neighboring neutrophils. Neutrophils cause telomere dysfunction both in vitro and ex vivo in a ROS-dependent manner. In a mouse model of acute liver injury, depletion of neutrophils reduces telomere dysfunction and senescence. Finally, we show that senescent cells mediate the recruitment of neutrophils to the aged liver and propose that this may be a mechanism by which senescence spreads to surrounding cells. Our results suggest that interventions that counteract neutrophil-induced senescence may be beneficial during aging and age-related disease.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Tetracloruro de Carbono/efectos adversos , Neutrófilos/citología , Especies Reactivas de Oxígeno/metabolismo , Acortamiento del Telómero , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Animales , Línea Celular , Senescencia Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Ratones , Neutrófilos/metabolismo , Estrés Oxidativo , Comunicación Paracrina
5.
Am J Pathol ; 193(4): 417-429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36690076

RESUMEN

miRNAs are 22 nucleotides long and belong to a class of noncoding RNAs that plays an important role in regulating gene expression at a post-transcriptional level. Studies show aberrant levels of miRNAs to be associated with profibrotic processes in idiopathic pulmonary fibrosis (IPF). However, most of these studies used whole IPF tissue or in vitro monocultures in which fibrosis was artificially induced. The current study used laser microdissection to collect fibroblastic foci (FF), the key pathologic lesion in IPF, isolated miRNAs, and compared their expression levels with those found in whole IPF lung tissue and/or in vitro cultured fibroblast from IPF or normal lungs. Sequencing libraries were generated, and data generated were bioinformatically analyzed. A total of 18 miRNAs were significantly overexpressed in FF tissue when compared with whole IPF tissue. Of those, 15 were unique to FF. Comparison of FF with cultured IPF fibroblasts also revealed differences in miRNA composition that impacted several signaling pathways. The miRNA composition of FF is both overlapping and distinct from that of whole IPF tissue or cultured IPF fibroblasts and highlights the importance of characterizing FF biology as a phenotypically and functionally discrete tissue microenvironment.


Asunto(s)
Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pulmón/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo
6.
Hepatology ; 78(4): 1050-1063, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089330

RESUMEN

BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death. The NF-κB transcription factor family subunit c-Rel is typically protumorigenic; however, it has recently been reported as a tumor suppressor. Here, we investigated the role of c-Rel in HCC. APPROACH AND RESULTS: Histological and transcriptional studies confirmed expression of c-Rel in human patients with HCC, but low c-Rel expression correlated with increased tumor cell proliferation and mutational burden and was associated with advanced disease. In vivo , global ( Rel-/- ) and epithelial specific ( RelAlb ) c-Rel knockout mice develop more tumors, with a higher proliferative rate and increased DNA damage, than wild-type (WT) controls 30 weeks after N-diethylnitrosamine injury. However, tumor burden was comparable when c-Rel was deleted in hepatocytes once tumors were established, suggesting c-Rel signaling is important for preventing HCC initiation after genotoxic injury, rather than for HCC progression. In vitro , Rel-/- hepatocytes were more susceptible to genotoxic injury than WT controls. ATM-CHK2 DNA damage response pathway proteins were suppressed in Rel-/- hepatocytes following genotoxic injury, suggesting that c-Rel is required for effective DNA repair. To determine if c-Rel inhibition sensitizes cancer cells to chemotherapy, by preventing repair of chemotherapy-induced DNA damage, thus increasing tumor cell death, we administered single or combination doxorubicin and IT-603 (c-Rel inhibitor) therapy in an orthotopic HCC model. Indeed, combination therapy was more efficacious than doxorubicin alone. CONCLUSION: Hepatocyte c-Rel signaling limits genotoxic injury and subsequent HCC burden. Inhibiting c-Rel as an adjuvant therapy increased the effectiveness of DNA damaging agents and reduced HCC growth.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Daño del ADN , Doxorrubicina/farmacología , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo
7.
Br J Cancer ; 128(7): 1236-1248, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36707636

RESUMEN

BACKGROUND: Molecular characterisation of hepatocellular carcinoma (HCC) is central to the development of novel therapeutic strategies for the disease. We have previously demonstrated mutagenic consequences of Long-Interspersed Nuclear Element-1 (LINE1s/L1) retrotransposition. However, the role of L1 in HCC, besides somatic mutagenesis, is not well understood. METHODS: We analysed L1 expression in the TCGA-HCC RNAseq dataset (n = 372) and explored potential relationships between L1 expression and clinical features. The findings were confirmed by immunohistochemical (IHC) analysis of an independent human HCC cohort (n = 48) and functional mechanisms explored using in vitro and in vivo model systems. RESULTS: We observed positive associations between L1 and activated TGFß-signalling, TP53 mutation, alpha-fetoprotein and tumour invasion. IHC confirmed a positive association between pSMAD3, a surrogate for TGFß-signalling status, and L1 ORF1p (P < 0.0001, n = 32). Experimental modulation of L1 ORF1p levels revealed an influence of L1 ORF1p on key hepatocarcinogenesis-related pathways. Reduction in cell migration and invasive capacity was observed upon L1 ORF1 knockdown, both in vitro and in vivo. In particular, L1 ORF1p increased PIN1 cytoplasmic localisation. Blocking PIN1 activity abrogated L1 ORF1p-induced NF-κB-mediated inflammatory response genes while further activated TGFß-signalling confirming differential alteration of PIN1 activity in cellular compartments by L1 ORF1p. DISCUSSION: Our data demonstrate a causal link between L1 ORF1p and key oncogenic pathways mediated by PIN1, presenting a novel therapeutic avenue.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Retroelementos , Carcinoma Hepatocelular/genética , Regulación hacia Arriba , Neoplasias Hepáticas/genética , Elementos de Nucleótido Esparcido Largo/genética , Factor de Crecimiento Transformador beta/genética , Peptidilprolil Isomerasa de Interacción con NIMA/genética
8.
J Immunol ; 206(4): 904-916, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33441438

RESUMEN

Age-related chronic inflammation promotes cellular senescence, chronic disease, cancer, and reduced lifespan. In this study, we wanted to explore the effects of a moderate exercise regimen on inflammatory liver disease and tumorigenesis. We used an established model of spontaneous inflammaging, steatosis, and cancer (nfkb1-/- mouse) to demonstrate whether 3 mo of moderate aerobic exercise was sufficient to suppress liver disease and cancer development. Interventional exercise when applied at a relatively late disease stage was effective at reducing tissue inflammation (liver, lung, and stomach), oxidative damage, and cellular senescence, and it reversed hepatic steatosis and prevented tumor development. Underlying these benefits were transcriptional changes in enzymes driving the conversion of tryptophan to NAD+, this leading to increased hepatic NAD+ and elevated activity of the NAD+-dependent deacetylase sirtuin. Increased SIRT activity was correlated with enhanced deacetylation of key transcriptional regulators of inflammation and metabolism, NF-κB (p65), and PGC-1α. We propose that moderate exercise can effectively reprogram pre-established inflammatory and metabolic pathologies in aging with the benefit of prevention of disease.


Asunto(s)
Envejecimiento/inmunología , Carcinogénesis/inmunología , Hígado Graso/prevención & control , Neoplasias Hepáticas/prevención & control , Condicionamiento Físico Animal , Envejecimiento/genética , Envejecimiento/patología , Animales , Carcinogénesis/patología , Senescencia Celular/inmunología , Hígado Graso/inmunología , Hígado Graso/patología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Ratones , Ratones Noqueados , Subunidad p50 de NF-kappa B/genética , Subunidad p50 de NF-kappa B/inmunología
9.
Am J Otolaryngol ; 44(6): 104000, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37499343

RESUMEN

BACKGROUND: Opioids are a part of standard of care treatment of acute, severe postoperative pain. However, increased opioid requirements have been shown to be associated with increased postoperative complications, morbidity, and mortality. The aim of this study was to identify potential predictive factors associated with increased or decreased opioid requirements after free tissue transfer (FTT) to the head and neck. MATERIALS/METHODS: A retrospective review was conducted on subjects who underwent head and neck reconstruction (HNR) from 2015 to 2021 at a single tertiary care center. Patients with inpatient stay over 10 days and those receiving fentanyl for sedation purposes were excluded due to EMR limitations and confounding, respectively. The total dose of opioid medication each patient received was calculated and summed using morphine milligram equivalents (MME). Statistical analysis was conducted using poisson regression and multivariable regression models. RESULTS: Two hundred and ninety-one patients were included. The mean opioid requirement for all subjects was 228.6 (SD 250.0) MMEs during their entire postoperative stay and the mean length of stay was 6.0 (SD 1.7) days. An established opioid prescription prior to surgical resection was the greatest predictor of increased risk for opioid requirement according univariate and multivariate analysis 2.356 (2.321-2.392), p ≤ 0.0001 and 1.833 (1.802-1.863), p ≤ 0.0001, respectively. Fibula transfers were associated with higher opioid requirements while scapula transfers were associated with decreased opioid requirements compared to other free tissue transfer types. CONCLUSION: Preoperative opioid use was associated with higher postoperative opioid requirements. Multimodal pain management (MMPM) was not associated with a decreased opioid requirement; however, further studies are needed to investigate the hierarchy, dosing, and timing of MMPM in relation to opioid requirements and pain control.


Asunto(s)
Colgajos Tisulares Libres , Trastornos Relacionados con Opioides , Procedimientos de Cirugía Plástica , Humanos , Analgésicos Opioides , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/etiología , Estudios Retrospectivos
10.
Gut ; 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35477863

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. DESIGN: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. RESULTS: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. CONCLUSION: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC.

11.
J Hepatol ; 77(1): 219-236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35157957

RESUMEN

HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis C Crónica , Neoplasias Hepáticas , Antivirales/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Progresión de la Enfermedad , Hepacivirus , Hepatitis C Crónica/complicaciones , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/patología , Humanos , Neoplasias Hepáticas/patología , Obesidad/tratamiento farmacológico , Respuesta Virológica Sostenida
12.
J Hepatol ; 77(4): 991-1004, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750136

RESUMEN

BACKGROUND & AIMS: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis. METHODS: TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed. RESULTS: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism. CONCLUSIONS: TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target. LAY SUMMARY: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.


Asunto(s)
Colestasis , Glicoproteínas de Membrana , Receptores Inmunológicos , Ácido Ursodesoxicólico , Animales , Antibacterianos , Antiinflamatorios , Colestasis/complicaciones , Inflamación , Interleucina-33 , Lipopolisacáridos , Hígado , Glicoproteínas de Membrana/genética , Ratones , Receptores Inmunológicos/genética , Receptor Activador Expresado en Células Mieloides 1 , Ácido Ursodesoxicólico/farmacología
13.
Hepatology ; 74(5): 2652-2669, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34157147

RESUMEN

BACKGROUND AND AIMS: Lenvatinib is an effective drug in advanced HCC. Its combination with the anti-PD1 (programmed cell death protein 1) immune checkpoint inhibitor, pembrolizumab, has generated encouraging results in phase Ib and is currently being tested in phase III trials. Here, we aimed to explore the molecular and immunomodulatory effects of lenvatinib alone or in combination with anti-PD1. APPROACH AND RESULTS: We generated three syngeneic models of HCC in C57BL/6J mice (subcutaneous and orthotopic) and randomized animals to receive placebo, lenvatinib, anti-PD1, or combination treatment. Flow cytometry, transcriptomic, and immunohistochemistry analyses were performed in tumor and blood samples. A gene signature, capturing molecular features associated with the combination therapy, was used to identify a subset of candidates in a cohort of 228 HCC patients who might respond beyond what is expected for monotherapies. In mice, the combination treatment resulted in tumor regression and shorter time to response compared to monotherapies (P < 0.001). Single-agent anti-PD1 induced dendritic and T-cell infiltrates, and lenvatinib reduced the regulatory T cell (Treg) proportion. However, only the combination treatment significantly inhibited immune suppressive signaling, which was associated with the TGFß pathway and induced an immune-active microenvironment (P < 0.05 vs. other therapies). Based on immune-related genomic profiles in human HCC, 22% of patients were identified as potential responders beyond single-agent therapies, with tumors characterized by Treg cell infiltrates, low inflammatory signaling, and VEGFR pathway activation. CONCLUSIONS: Lenvatinib plus anti-PD1 exerted unique immunomodulatory effects through activation of immune pathways, reduction of Treg cell infiltrate, and inhibition of TGFß signaling. A gene signature enabled the identification of ~20% of human HCCs that, although nonresponding to single agents, could benefit from the proposed combination.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Compuestos de Fenilurea/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Quinolinas/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma Hepatocelular/inmunología , Línea Celular Tumoral/trasplante , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Masculino , Ratones , Compuestos de Fenilurea/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinolinas/uso terapéutico , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
14.
Hepatology ; 74(6): 3441-3459, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34233024

RESUMEN

BACKGROUND AND AIMS: NAFLD is the most common hepatic pathology in western countries and no treatment is currently available. NAFLD is characterized by the aberrant hepatocellular accumulation of fatty acids in the form of lipid droplets (LDs). Recently, it was shown that liver LD degradation occurs through a process termed lipophagy, a form of autophagy. However, the molecular mechanisms governing liver lipophagy are elusive. Here, we aimed to ascertain the key molecular players that regulate hepatic lipophagy and their importance in NAFLD. APPROACH AND RESULTS: We analyzed the formation and degradation of LD in vitro (fibroblasts and primary mouse hepatocytes), in vivo and ex vivo (mouse and human liver slices) and focused on the role of the autophagy master regulator mammalian target of rapamycin complex (mTORC) 1 and the LD coating protein perilipin (Plin) 3 in these processes. We show that the autophagy machinery is recruited to the LD on hepatic overload of oleic acid in all experimental settings. This led to activation of lipophagy, a process that was abolished by Plin3 knockdown using RNA interference. Furthermore, Plin3 directly interacted with the autophagy proteins focal adhesion interaction protein 200 KDa and autophagy-related 16L, suggesting that Plin3 functions as a docking protein or is involved in autophagosome formation to activate lipophagy. Finally, we show that mTORC1 phosphorylated Plin3 to promote LD degradation. CONCLUSIONS: These results reveal that mTORC1 regulates liver lipophagy through a mechanism dependent on Plin3 phosphorylation. We propose that stimulating this pathway can enhance lipophagy in hepatocytes to help protect the liver from lipid-mediated toxicity, thus offering a therapeutic strategy in NAFLD.


Asunto(s)
Autofagia , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Perilipina-3/metabolismo , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
15.
Oper Tech Otolayngol Head Neck Surg ; 33(2): 84-95, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35502268

RESUMEN

In 2019, the emergence of the novel SARS-CoV-2 virus in Wuhan, China transformed society and caused major changes in medical care. Efforts to implement protocols to keep providers and their staffs safe during care of all patients ensued. Within the field of laryngology, the risk of aerosol generation and viral spread was among the highest in medicine. It is important to understand the impact of COVID-19 on presurgical and surgical laryngoscopic care as well as the evolution of knowledge that led to our current practices and protocols.

16.
Gut ; 70(7): 1345-1361, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32907830

RESUMEN

OBJECTIVE: Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN: TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS: TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION: TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.


Asunto(s)
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Glicoproteínas de Membrana/genética , Receptores Inmunológicos/genética , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Dietilnitrosamina , Femenino , Mutación con Ganancia de Función , Expresión Génica , Células Estrelladas Hepáticas/metabolismo , Hepatitis/metabolismo , Hepatocitos/patología , Hepatocitos/fisiología , Humanos , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Regeneración Hepática/genética , Regeneración Hepática/fisiología , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Persona de Mediana Edad , Estrés Oxidativo , Factores Protectores , ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Inmunológicos/metabolismo , Esferoides Celulares , Regulación hacia Arriba , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteína Wnt3/metabolismo
17.
EMBO J ; 35(7): 724-42, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26848154

RESUMEN

Cell senescence is an important tumour suppressor mechanism and driver of ageing. Both functions are dependent on the development of the senescent phenotype, which involves an overproduction of pro-inflammatory and pro-oxidant signals. However, the exact mechanisms regulating these phenotypes remain poorly understood. Here, we show the critical role of mitochondria in cellular senescence. In multiple models of senescence, absence of mitochondria reduced a spectrum of senescence effectors and phenotypes while preserving ATP production via enhanced glycolysis. Global transcriptomic analysis by RNA sequencing revealed that a vast number of senescent-associated changes are dependent on mitochondria, particularly the pro-inflammatory phenotype. Mechanistically, we show that the ATM, Akt and mTORC1 phosphorylation cascade integrates signals from the DNA damage response (DDR) towards PGC-1ß-dependent mitochondrial biogenesis, contributing to aROS-mediated activation of the DDR and cell cycle arrest. Finally, we demonstrate that the reduction in mitochondrial content in vivo, by either mTORC1 inhibition or PGC-1ß deletion, prevents senescence in the ageing mouse liver. Our results suggest that mitochondria are a candidate target for interventions to reduce the deleterious impact of senescence in ageing tissues.


Asunto(s)
Envejecimiento/fisiología , Mitocondrias/fisiología , Animales , Línea Celular , Humanos , Ratones , Modelos Biológicos , Fenotipo
18.
Gastroenterology ; 157(5): 1398-1412.e9, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31352003

RESUMEN

BACKGROUND & AIMS: Methyl-CpG binding protein 2, MECP2, which binds to methylated regions of DNA to regulate transcription, is expressed by hepatic stellate cells (HSCs) and is required for development of liver fibrosis in mice. We investigated the effects of MECP2 deletion from HSCs on their transcriptome and of phosphorylation of MECP2 on HSC phenotype and liver fibrosis. METHODS: We isolated HSCs from Mecp2-/y mice and wild-type (control) mice. HSCs were activated in culture and used in array analyses of messenger RNAs and long noncoding RNAs. Kyoto Encyclopedia of Genes and Genomes pathway analyses identified pathways regulated by MECP2. We studied mice that expressed a mutated form of Mecp2 that encodes the S80A substitution, MECP2S80, causing loss of MECP2 phosphorylation at serine 80. Liver fibrosis was induced in these mice by administration of carbon tetrachloride, and liver tissues and HSCs were collected and analyzed. RESULTS: MECP2 deletion altered expression of 284 messenger RNAs and 244 long noncoding RNAs, including those that regulate DNA replication; are members of the minichromosome maintenance protein complex family; or encode CDC7, HAS2, DNA2 (a DNA helicase), or RPA2 (a protein that binds single-stranded DNA). We found that MECP2 regulates the DNA repair Fanconi anemia pathway in HSCs. Phosphorylation of MECP2S80 and its putative kinase, HAS2, were induced during transdifferentiation of HSCs. HSCs from MECP2S80 mice had reduced proliferation, and livers from these mice had reduced fibrosis after carbon tetrachloride administration. CONCLUSIONS: In studies of mice with disruption of Mecp2 or that expressed a form of MECP2 that is not phosphorylated at S80, we found phosphorylation of MECP2 to be required for HSC proliferation and induction of fibrosis. In HSCs, MECP2 regulates expression of genes required for DNA replication and repair. Strategies to inhibit MECP2 phosphorylation at S80 might be developed for treatment of liver fibrosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Acetaminofén , Animales , Tetracloruro de Carbono , Proliferación Celular , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno/metabolismo , Reparación del ADN , Replicación del ADN , Células Estrelladas Hepáticas/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Masculino , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Serina , Transducción de Señal
19.
Hepatology ; 70(4): 1377-1391, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30963615

RESUMEN

Precision cut liver slices (PCLSs) retain the structure and cellular composition of the native liver and represent an improved system to study liver fibrosis compared to two-dimensional mono- or co-cultures. The aim of this study was to develop a bioreactor system to increase the healthy life span of PCLSs and model fibrogenesis. PCLSs were generated from normal rat or human liver, or fibrotic rat liver, and cultured in our bioreactor. PCLS function was quantified by albumin enzyme-linked immunosorbent assay (ELISA). Fibrosis was induced in PCLSs by transforming growth factor beta 1 (TGFß1) and platelet-derived growth factor (PDGFßß) stimulation ± therapy. Fibrosis was assessed by gene expression, picrosirius red, and α-smooth muscle actin staining, hydroxyproline assay, and soluble ELISAs. Bioreactor-cultured PCLSs are viable, maintaining tissue structure, metabolic activity, and stable albumin secretion for up to 6 days under normoxic culture conditions. Conversely, standard static transwell-cultured PCLSs rapidly deteriorate, and albumin secretion is significantly impaired by 48 hours. TGFß1/PDGFßß stimulation of rat or human PCLSs induced fibrogenic gene expression, release of extracellular matrix proteins, activation of hepatic myofibroblasts, and histological fibrosis. Fibrogenesis slowly progresses over 6 days in cultured fibrotic rat PCLSs without exogenous challenge. Activin receptor-like kinase 5 (Alk5) inhibitor (Alk5i), nintedanib, and obeticholic acid therapy limited fibrogenesis in TGFß1/PDGFßß-stimulated PCLSs, and Alk5i blunted progression of fibrosis in fibrotic PCLS. Conclusion: We describe a bioreactor technology that maintains functional PCLS cultures for 6 days. Bioreactor-cultured PCLSs can be successfully used to model fibrogenesis and demonstrate efficacy of antifibrotic therapies.


Asunto(s)
Reactores Biológicos , Regulación de la Expresión Génica , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Técnicas de Cultivo de Tejidos/métodos , Animales , Biopsia con Aguja , Técnicas de Cocultivo/métodos , Modelos Animales de Enfermedad , Humanos , Inmunohistoquímica , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Factores de Tiempo
20.
Rheumatology (Oxford) ; 59(12): 3939-3951, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32725139

RESUMEN

OBJECTIVES: NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS: Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS: cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION: cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Esclerodermia Sistémica/metabolismo , Animales , Matriz Extracelular/metabolismo , Fibrosis , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Humanos , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerodermia Sistémica/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA