Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 35(8): e2208659, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36369973

RESUMEN

2D MXenes have diverse and chemically tunable optical properties that arise from an interplay between free carriers, interband transitions, and plasmon resonances. The nature of photoexcitations and their dynamics in three different members of the MXene family, Ti3 C2 , Mo2 Ti2 C3 , and Nb2 C, are investigated using two complementary pump-probe techniques, transient optical absorption, and time-resolved terahertz (THz) spectroscopy. Measurements reveal pronounced plasmonic effects in the visible and near-IR in all three. Optical excitation, with either 400 or 800 nm pulses, results in a rapid increase in lattice temperature, evidenced by a pronounced broadening of the plasmon mode that presents as a plasmon bleach in transient absorption measurements. Observed kinetics of plasmon bleach recovery provide a means to monitor lattice cooling. Remarkably slow cooling, proceeding over hundreds of picoseconds to nanoseconds time scales, implies MXenes have low thermal conductivities. The slowest recovery kinetics are observed in the MXene with the highest free carrier density, viz. Ti3 C2 , that supports phonon scattering by free carriers as a possible mechanism limiting thermal conductivity. These new insights into photoexcitation dynamics can facilitate their applications in photothermal solar energy conversion, plasmonic devices, and even photothermal therapy and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA