Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Res Toxicol ; 22(2): 280-93, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19183054

RESUMEN

With the recent publication of the FDA guidance on metabolites in safety testing (MIST), a reflection is provided that describes the impact of this guidance on the processes of drug metabolite identification and quantification at various stages of drug development. First, a retrospective analysis is described that was conducted on 12 human absorption, metabolism, and excretion (AME) trials with the application of these MIST criteria. This analysis showed that the number of metabolites requiring identification, (semi)-quantification, and coverage in the toxicology species would substantially increase. However, a significant proportion of these metabolites were direct or indirect conjugates, a class of metabolites that was specifically addressed in the guidance as being largely innocuous. The nonconjugated metabolites were all covered in at least one toxicology animal species, with no need for additional safety evaluation. Second, analytical considerations pertaining to the efficient identification of metabolites are discussed. Topics include software-assisted detection and structural identification of metabolites, the emerging hyphenation of ultraperformance liquid chromatography (UPLC) with radioactivity detection, and the various ways to estimate metabolite abundance in the absence of an authentic standard. Technical aspects around the analysis of metabolite profiles are also presented, focusing on precautions to be taken in order not to introduce artifacts. Finally, a tiered approach for metabolite quantification is proposed, starting with quantification of metabolites prior to the multiple ascending dose study (MAD) in humans in only specific cases (Tier A). The following step is the identification and quantification of metabolites expected to be of pharmacological or toxicological relevance (based on MIST and other complementary criteria) in selected samples from the MAD study and preclinical studies in order to assess metabolite exposure coverage (Tier B). Finally, a metabolite quantification strategy for the studies after the MAD phase (Tier C) is proposed.


Asunto(s)
Preparaciones Farmacéuticas/metabolismo , Pruebas de Toxicidad/métodos , Animales , Árboles de Decisión , Evaluación de Medicamentos , Guías como Asunto , Humanos , Preparaciones Farmacéuticas/química
2.
Reprod Toxicol ; 26(3-4): 220-30, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18926897

RESUMEN

Knowledge of the ontogeny of the various systems involved in distribution and elimination of drugs is important for adequate interpretation of the findings during safety studies in juvenile animals. The present study was designed to collect information on plasma concentrations of total protein and albumin, enzyme activity and mRNA expression of cytochrome P450 isoenzymes (CYP1A1/2, CYP2B1/2, CYP2E1, CYP3A1/2, and CYP4A1), carboxylesterase and thyroxin glucuronidation (T4-GT) activity in liver microsomes, and mRNA expression of transporters (Mdr1a/b, Mrp1-3 and 6, Bsep and Bcrp, Oct1-2, Oat1-3 and Oatp1a4) in liver, kidney and brain tissue during development in Sprague-Dawley rats. Enzyme activities were determined by measuring the metabolism of marker substrates; expression of mRNAs was assessed using RTq-PCR. There were considerable differences in the ontogeny of the individual cytochrome P450 isoenzymes. In addition, ontogeny patterns of enzyme activity did not always parallel ontogeny patterns of mRNA expression. Ontogeny of the transporters depended on the transporter and the organ studied. Changes in mRNA expression of the various transporters during development are likely to result in altered elimination and/or tissue distribution of substrates, with concomitant changes in hepatic metabolism, renal excretion and passage through the blood-brain barrier. Consideration of the ontogeny of metabolizing enzymes and transporters may improve the design and interpretation of results of toxicity studies in juvenile animals.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/análisis , Proteínas Sanguíneas/análisis , Sistema Enzimático del Citocromo P-450/análisis , Transportadoras de Casetes de Unión a ATP/genética , Factores de Edad , Animales , Animales Recién Nacidos , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/análisis , Proteínas de Transporte de Catecolaminas en la Membrana Plasmática/genética , Sistema Enzimático del Citocromo P-450/genética , Femenino , Masculino , Microsomas Hepáticos/enzimología , Proteína 1 de Transporte de Anión Orgánico/análisis , Proteína 1 de Transporte de Anión Orgánico/genética , Transportadores de Anión Orgánico Sodio-Independiente/análisis , Transportadores de Anión Orgánico Sodio-Independiente/genética , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA