Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angiogenesis ; 26(3): 423-436, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36977946

RESUMEN

Severe inflammatory stress often leads to vessel rarefaction and fibrosis, resulting in limited tissue recovery. However, signaling pathways mediating these processes are not completely understood. Patients with ischemic and inflammatory conditions have increased systemic Activin A level, which frequently correlates with the severity of pathology. Yet, Activin A's contribution to disease progression, specifically to vascular homeostasis and remodeling, is not well defined. This study investigated vasculogenesis in an inflammatory environment with an emphasis on Activin A's role. Exposure of endothelial cells (EC) and perivascular cells (adipose stromal cells, ASC) to inflammatory stimuli (represented by blood mononuclear cells from healthy donors activated with lipopolysaccharide, aPBMC) dramatically decreased EC tubulogenesis or caused vessel rarefaction compared to control co-cultures, concurrent with increased Activin A secretion. Both EC and ASC upregulated Inhibin Ba mRNA and Activin A secretion in response to aPBMC or their secretome. We identified TNFα (in EC) and IL-1ß (in EC and ASC) as the exclusive inflammatory factors, present in aPBMC secretome, responsible for induction of Activin A. Similar to ASC, brain and placental pericytes upregulated Activin A in response to aPBMC and IL-1ß, but not TNFα. Both these cytokines individually diminished EC tubulogenesis. Blocking Activin A with neutralizing IgG mitigated detrimental effects of aPBMC or TNFα/IL-1ß on tubulogenesis in vitro and vessel formation in vivo. This study delineates the signaling pathway through which inflammatory cells have a detrimental effect on vessel formation and homeostasis, and highlights the central role of Activin A in this process. Transitory interference with Activin A during early phases of inflammatory or ischemic insult, with neutralizing antibodies or scavengers, may benefit vasculature preservation and overall tissue recovery.


Asunto(s)
Células Endoteliales , Placenta , Humanos , Femenino , Embarazo , Células Endoteliales/metabolismo , Activinas/metabolismo , Diferenciación Celular , Células Cultivadas
2.
Stem Cells Dev ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38877807

RESUMEN

Prolonged tissue ischemia and inflammation lead to organ deterioration and are often accompanied by microvasculature rarefaction, fibrosis, and elevated systemic Activin A (ActA), the level of which frequently correlates with disease severity. Mesenchymal stromal cells are prevalent in the perivascular niche and are likely involved in tissue homeostasis and pathology. This study investigated the effects of inflammatory cells on modulation of phenotype of adipose mesenchymal stromal cells (ASC) and the role of ActA in this process. Peripheral blood mononuclear cells were activated with lipopolysaccharide (activated peripheral blood mononuclear cells [aPBMC]) and presented to ASC. Expression of smooth muscle/myofibroblast markers, ActA, transforming growth factors beta 1-3 (TGFß1-3), and connective tissue growth factor (CTGF) was assessed in ASC. Silencing approaches were used to dissect the signaling cascade of aPBMC-induced acquisition of myofibroblast phenotype by ASC. ASC cocultured with aPBMC or exposed to the secretome of aPBMC upregulated smooth muscle cell markers alpha smooth muscle actin (αSMA), SM22α, and Calponin I; increased contractility; and initiated expression of ActA. Interleukin (IL)-1ß was sufficient to replicate this response, whereas blocking IL-1ß eliminated aPBMC effects. ASC-derived ActA stimulated CTGF and αSMA expression in ASC; the latter independent of CTGF. Induction of αSMA in ASC by IL-1ß or ActA-enriched media relied on extracellular enzymatic activity. ActA upregulated mRNA levels of several extracellular matrix proteins in ASC, albeit to a lesser degree than TGFß1, and marginally increased cell contractility. In conclusion, the study suggests that aPBMC induce myofibroblast phenotype with weak fibrotic activity in perivascular progenitors, such as ASC, through the IL-1ß-ActA signaling axis, which also promotes CTGF secretion, and these effects require ActA extracellular enzymatic processing.

3.
Aging Cell ; 23(2): e14037, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225896

RESUMEN

Doxorubicin (Dox), a widely used treatment for cancer, can result in chemotherapy-induced cognitive impairments (chemobrain). Chemobrain is associated with inflammation and oxidative stress similar to aging. As such, Dox treatment has also been used as a model of aging. However, it is unclear if Dox induces brain changes similar to that observed during aging since Dox does not readily enter the brain. Rather, the mechanism for chemobrain likely involves the induction of peripheral cellular senescence and the release of senescence-associated secretory phenotype (SASP) factors and these SASP factors can enter the brain to disrupt cognition. We examined the effect of Dox on peripheral and brain markers of aging and cognition. In addition, we employed the senolytic, ABT-263, which also has limited access to the brain. The results indicate that plasma SASP factors enter the brain, activating microglia, increasing oxidative stress, and altering gene transcription. In turn, the synaptic function required for memory was reduced in response to altered redox signaling. ABT-263 prevented or limited most of the Dox-induced effects. The results emphasize a link between cognitive decline and the release of SASP factors from peripheral senescent cells and indicate some differences as well as similarities between advanced age and Dox treatment.


Asunto(s)
Deterioro Cognitivo Relacionado con la Quimioterapia , Sulfonamidas , Humanos , Senoterapéuticos , Doxorrubicina/efectos adversos , Compuestos de Anilina , Senescencia Celular
4.
Aging Cell ; 22(5): e13817, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36959691

RESUMEN

We examine similar and differential effects of two senolytic treatments, ABT-263 and dasatinib + quercetin (D + Q), in preserving cognition, markers of peripheral senescence, and markers of brain aging thought to underlie cognitive decline. Male F344 rats were treated from 12 to 18 months of age with D + Q, ABT-263, or vehicle, and were compared to young (6 months). Both senolytic treatments rescued memory, preserved the blood-brain barrier (BBB) integrity, and prevented the age-related decline in hippocampal N-methyl-D-aspartate receptor (NMDAR) function associated with impaired cognition. Senolytic treatments decreased senescence-associated secretory phenotype (SASP) and inflammatory cytokines/chemokines in the plasma (IL-1ß, IP-10, and RANTES), with some markers more responsive to D + Q (TNFα) or ABT-263 (IFNγ, leptin, EGF). ABT-263 was more effective in decreasing senescence genes in the spleen. Both senolytic treatments decreased the expression of immune response and oxidative stress genes and increased the expression of synaptic genes in the dentate gyrus (DG). However, D + Q influenced twice as many genes as ABT-263. Relative to D + Q, the ABT-263 group exhibited increased expression of DG genes linked to cell death and negative regulation of apoptosis and microglial cell activation. Furthermore, D + Q was more effective at decreasing morphological markers of microglial activation. The results indicate that preserved cognition was associated with the removal of peripheral senescent cells, decreasing systemic inflammation that normally drives neuroinflammation, BBB breakdown, and impaired synaptic function. Dissimilarities associated with brain transcription indicate divergence in central mechanisms, possibly due to differential access.


Asunto(s)
Disfunción Cognitiva , Senoterapéuticos , Ratas , Animales , Masculino , Ratas Endogámicas F344 , Senescencia Celular , Envejecimiento , Hipocampo , Dasatinib/farmacología , Disfunción Cognitiva/genética , Quercetina/farmacología
5.
Aging (Albany NY) ; 13(15): 19088-19107, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34375950

RESUMEN

Aging is associated with an increased susceptibility to adverse inflammatory conditions such as sepsis and cytokine storm. We hypothesized that senescent cells (SnCs) play a central role in this age-associated pathology in part due to their expression of the senescence-associated secretory phenotype (SASP), which may prime SnCs to inflammatory stimulation. To test this hypothesis, we examined the expression of various inflammatory cytokines and chemokines at the levels of gene transcription and protein production in various SnCs in vitro in response to lipopolysaccharide (LPS), interleukin-1ß (IL1ß), and tumor necrosis factor α (TNFα) stimulation. We found that SnCs not only expressed higher basal levels of various inflammatory cytokines and chemokines as a manifestation of the SASP, but more importantly exhibited hyper-activation of the induction of a variety of inflammatory mediators in response to LPS, IL1ß and TNFα stimulation as compared with non-SnCs. This senescence-associated hyper-activation is likely mediated in part via the p38MAPK (p38) and NFκB pathways because LPS stimulation elicited significantly higher levels of p38 phosphorylation and NFκB p65 nuclear translation in SnCs when compared to their non-senescent counterparts and inhibition of these pathways with losmapimod (a p38 specific inhibitor) and BMS-345541 (a selective NFκB inhibitor) attenuated LPS-induced expression of IL6, TNFα, CCL5, and IL1ß mRNA in SnCs. These findings suggest that SnCs may play an important role in the age-related increases in the susceptibility to developing an exacerbated inflammatory response and highlight the potential to use senotherapeutics to ameliorate the severity of various devastating inflammatory conditions in the elderly.


Asunto(s)
Mediadores de Inflamación/farmacología , Fenotipo Secretor Asociado a la Senescencia/efectos de los fármacos , Fenotipo Secretor Asociado a la Senescencia/fisiología , Línea Celular , Ciclopropanos/farmacología , Humanos , Imidazoles/farmacología , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Piridinas/farmacología , Quinoxalinas/farmacología , Senoterapéuticos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA