RESUMEN
We report the spectral shaping of supercontinuum generation in liquids by employing properly engineered Bessel beams coupled with artificial neural networks. We demonstrate that given a custom spectrum, neural networks are capable of outputting the experimental parameters needed to generate it experimentally.
RESUMEN
We demonstrate that paraxial ring-Airy beams can approach the wavelength limit, while observing a counterintuitive, strong enhancement of their focal peak intensity. Using numerical simulations, we show that this behavior is a result of the coherent constructive action of paraxial and nonparaxial energy flow. A simple theoretical model enables us to predict the parameter range over which this is possible.
Asunto(s)
Modelos Teóricos , Refractometría/métodos , Dispersión de Radiación , Simulación por Computador , Luz , Fenómenos FísicosRESUMEN
We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*10(4) deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.