Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 54(7): 3501-12, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25789714

RESUMEN

Two series of diphosphoryl-substituted porphyrins were synthesized and characterized by electrochemistry and spectroelectrochemistry in nonaqueous media containing 0.1 M tetra-n-butylammonium perchlorate (TBAP). The investigated compounds are 5,15-bis(diethoxyphosphoryl)-10,20-diphenylporphyrins (Ph)2(P(O)(OEt)2)2PorM and 5,15-bis(diethoxyphosphoryl)-10,20-di(para-carbomethoxyphenyl)porphyrins (PhCOOMe)2(P(O)(OEt)2)2PorM where M = 2H, Co(II), Ni(II), Cu(II), Zn(II), Cd(II), or Pd(II). The free-base and five metalated porphyrins with nonredox active centers undergo two ring-centered oxidations and two ring-centered reductions, the latter of which is followed by a chemical reaction of the porphyrin dianion to give an anionic phlorin product. The phlorin anion is electroactive and can be reoxidized by two electrons to give back the starting porphyrin, or it can be reversibly reduced by one electron at more negative potentials to give a phlorin dianion. The chemical conversion of the porphyrin dianion to a phlorin anion proceeds at a rate that varies with the nature of the central metal ion and the solvent. This rate is slowest in the basic solvent pyridine as compared to CH2Cl2 and PhCN, giving further evidence for the involvement of protons in the chemical reaction leading to phlorin formation. Calculations of the electronic structure were performed on the Ni(II) porphyrin dianion, and the most favorable atoms for electrophilic attack were determined to be the two phosphorylated carbon atoms. Phlorin formation was not observed after the two-electron reduction of the cobalt porphyrins due to the different oxidation state assignment of the doubly reduced species, a Co(I) π anion radical in one case and an M(II) dianion for all of the other derivatives. Each redox reaction was monitored by thin-layer UV-visible spectroelectrochemistry, and an overall mechanism for each electron transfer is proposed on the basis of these data.

2.
Inorg Chem ; 53(14): 7416-28, 2014 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-25004282

RESUMEN

Three related diruthenium complexes containing four symmetrical anionic bridging ligands were synthesized and characterized as to their electrochemical and spectroscopic properties. The examined compounds are represented as Ru2(dpb)4Cl, Ru2(dpb)4(CO), and Ru2(dpb)4(NO) in the solid state, where dpb = diphenylbenzamidinate anion. Different forms of Ru2(dpb)4Cl are observed in solution depending on the utilized solvent and the counteranion added to solution. Each Ru2(5+) form of the compound undergoes multiple redox processes involving the dimetal unit. The reversibility as well as potentials of these diruthenium-centered electrode reactions depends upon the solvent and the bound axial ligand. The Ru2(5+/4+) and Ru2(5+/6+) processes of Ru2(dpb)4Cl were monitored by UV-vis spectroscopy in both CH2Cl2 and PhCN. A conversion of Ru2(dpb)4Cl to [Ru2(dpb)4(CO)](+) was also carried out by simply bubbling CO gas through a CH2Cl2 solution of Ru2(dpb)4Cl at room temperature. The chemically generated [Ru2(dpb)4(CO)](+) complex undergoes several electron transfer processes in CH2Cl2 containing 0.1 M TBAClO4 under a CO atmosphere, and the same reactions were seen for a chemically synthesized sample of Ru2(dpf)4(CO) in CH2Cl2, 0.1 M TBAClO4 under a N2 atmosphere, where dpf = N,N'-diphenylformamidinate anion. Ru2(dpb)4(NO) undergoes two successive one-electron reductions and a single one-electron oxidation, all of which involve the diruthenium unit. The CO and NO adducts of Ru2(dpb)4 were further characterized by FTIR spectroelectrochemistry, and the IR spectral data of these compounds are discussed in light of results for previously characterized Ru2(dpf)4(CO) and Ru2(dpf)4(NO) derivatives under similar solution conditions.

3.
Inorg Chem ; 51(6): 3910-20, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22394192

RESUMEN

Two different methods for the regioselective nitration of different meso-triarylcorroles leading to the corresponding ß-substituted nitrocorrole iron complexes have been developed. A two-step procedure affords three Fe(III) nitrosyl products-the unsubstituted corrole, the 3-nitrocorrole, and the 3,17-dinitrocorrole. In contrast, a one-pot synthetic approach drives the reaction almost exclusively to formation of the iron nitrosyl 3,17-dinitrocorrole. Electron-releasing substituents on the meso-aryl groups of the triarylcorroles induce higher yields and longer reaction times than what is observed for the synthesis of similar triarylcorroles with electron-withdrawing functionalities, and these results can be confidently attributed to the facile formation and stabilization of an intermediate iron corrole π-cation radical. Electron-withdrawing substituents on the meso-aryl groups of triarylcorrole also seem to labilize the axial nitrosyl group which, in the case of the pentafluorophenylcorrole derivative, results in the direct formation of a disubstituted iron µ-oxo dimer complex. The influence of meso-aryl substituents on the progress and products of the nitration reaction was investigated. In addition, to elucidate the most important factors which influence the redox reactivity of these different iron nitrosyl complexes, selected compounds were examined by cyclic voltammetry and thin-layer UV-visible or FTIR spectroelectrochemistry in CH(2)Cl(2).


Asunto(s)
Hierro/química , Nitrocompuestos/química , Porfirinas/química , Cristalografía por Rayos X , Modelos Moleculares , Espectrometría de Masa Bombardeada por Átomos Veloces , Espectrofotometría Ultravioleta
4.
Inorg Chem ; 51(12): 6928-42, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22668242

RESUMEN

Functionalization of the ß-pyrrolic positions of the corrole macrocycle with -NO(2) groups is limited at present to metallocorrolates due to the instability exhibited by corrole free bases under oxidizing conditions. A careful choice of the oxidant can limit the transformation of corroles into decomposition products or isocorrole species, preserving the corrole aromaticity, and thus allowing the insertion of nitro groups onto the corrole framework. Here we report results obtained by reacting 5,10,15-tritolylcorrole (TTCorrH(3)) with the AgNO(2)/NaNO(2) system, to give mono- and dinitrocorrole derivatives when stoichiometry is carefully controlled. Reactions were found to be regioselective, affording the 3-NO(2)TTCorrH(3) and 3,17-(NO(2))(2)TTCorrH(3) isomers as the main products in the case of mono- and disubstitution, in 53 and 20% yields, respectively. In both cases, traces of other mono- and disubstituted isomers were detected, which were structurally characterized by X-ray crystallography. The influence of the ß-nitro substituents on the corrole properties is studied in detail by UV-visible, electrochemical, and spectroelectrochemical characterization of these functionalized corroles. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations of the ground and excited state properties of these ß-nitrocorrole derivatives also afforded significant information, closely matching the experimental observations. It is found that the ß-NO(2) substituents conjugate with the π-aromatic system of the macrocycle, which initiates significant changes in both the spectroscopic and redox properties of the so functionalized corroles. This effect is more pronounced when the nitro group is introduced at the 2-position, because in this case the conjugation is, for steric reasons, more efficient than in the 3-nitro isomer.


Asunto(s)
Porfirinas/síntesis química , Estructura Molecular , Porfirinas/química , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA