RESUMEN
Despite the importance of the RAS-RAF-MAPK pathway in normal physiology and disease of numerous organs, its role during pituitary development and tumourigenesis remains largely unknown. Here, we show that the over-activation of the MAPK pathway, through conditional expression of the gain-of-function alleles BrafV600E and KrasG12D in the developing mouse pituitary, results in severe hyperplasia and abnormal morphogenesis of the gland by the end of gestation. Cell-lineage commitment and terminal differentiation are disrupted, leading to a significant reduction in numbers of most of the hormone-producing cells before birth, with the exception of corticotrophs. Of note, Sox2+ stem cells and clonogenic potential are drastically increased in the mutant pituitaries. Finally, we reveal that papillary craniopharyngioma (PCP), a benign human pituitary tumour harbouring BRAF p.V600E also contains Sox2+ cells with sustained proliferative capacity and disrupted pituitary differentiation. Together, our data demonstrate a crucial function of the MAPK pathway in controlling the balance between proliferation and differentiation of Sox2+ cells and suggest that persistent proliferative capacity of Sox2+ cells may underlie the pathogenesis of PCP.
Asunto(s)
Craneofaringioma/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Neoplasias Hipofisarias/fisiopatología , Animales , Diferenciación Celular , Proliferación Celular , Craneofaringioma/genética , Craneofaringioma/patología , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Mutantes , Ratones Transgénicos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Hipófisis/citología , Hipófisis/embriología , Hipófisis/enzimología , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/patología , Embarazo , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismoRESUMEN
Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. ß-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP.
Asunto(s)
Craneofaringioma/metabolismo , Sistema de Señalización de MAP Quinasas , Neoplasias Hipofisarias/metabolismo , Transcriptoma , Microambiente Tumoral/fisiología , Animales , Biología Computacional , Craneofaringioma/patología , Craneofaringioma/terapia , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/metabolismo , Inflamación/terapia , Captura por Microdisección con Láser , Ratones , Neuroglía/metabolismo , Odontogénesis/fisiología , Hipófisis/embriología , Hipófisis/patología , Neoplasias Hipofisarias/patología , Neoplasias Hipofisarias/terapia , Análisis de Secuencia de ARN , Técnicas de Cultivo de TejidosRESUMEN
The accumulation of senescent cells in the tumor microenvironment can drive tumorigenesis in a paracrine manner through the senescence-associated secretory phenotype (SASP). Using a new p16-FDR mouse line, we show that macrophages and endothelial cells are the predominant senescent cell types in murine KRAS-driven lung tumors. Through single cell transcriptomics, we identify a population of tumor-associated macrophages that express a unique array of pro-tumorigenic SASP factors and surface proteins and are also present in normal aged lungs. Genetic or senolytic ablation of senescent cells, or macrophage depletion, result in a significant decrease in tumor burden and increased survival in KRAS-driven lung cancer models. Moreover, we reveal the presence of macrophages with senescent features in human lung pre-malignant lesions, but not in adenocarcinomas. Taken together, our results have uncovered the important role of senescent macrophages in the initiation and progression of lung cancer, highlighting potential therapeutic avenues and cancer preventative strategies.
Asunto(s)
Senescencia Celular , Neoplasias Pulmonares , Anciano , Animales , Humanos , Ratones , Carcinogénesis/genética , Carcinogénesis/metabolismo , Senescencia Celular/genética , Células Endoteliales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Microambiente TumoralRESUMEN
Senescence is a cellular stress response that results in the stable arrest of old, damaged or preneoplastic cells. Oncogene-induced senescence is tumor suppressive but can also exacerbate tumorigenesis through the secretion of pro-inflammatory factors from senescent cells. Drugs that selectively kill senescent cells, termed senolytics, have proved beneficial in animal models of many age-associated diseases. Here, we show that the cardiac glycoside, ouabain, is a senolytic agent with broad activity. Senescent cells are sensitized to ouabain-induced apoptosis, a process mediated in part by induction of the pro-apoptotic Bcl2-family protein NOXA. We show that cardiac glycosides synergize with anti-cancer drugs to kill tumor cells and eliminate senescent cells that accumulate after irradiation or in old mice. Ouabain also eliminates senescent preneoplastic cells. Our findings suggest that cardiac glycosides may be effective anti-cancer drugs by acting through multiple mechanism. Given the broad range of senescent cells targeted by cardiac glycosides their use against age-related diseases warrants further exploration.
Asunto(s)
Glicósidos Cardíacos/farmacología , Senescencia Celular/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Humanos , Ratones , Ouabaína/farmacología , Quercetina/farmacología , RatasRESUMEN
Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases.