Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
EMBO J ; 30(23): 4805-14, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-22081107

RESUMEN

Eukaryotic chromosomes are replicated from multiple origins that initiate throughout the S-phase of the cell cycle. Why all origins do not fire simultaneously at the beginning of S-phase is not known, but two kinase activities, cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK), are continually required throughout the S-phase for all replication initiation events. Here, we show that the two CDK substrates Sld3 and Sld2 and their binding partner Dpb11, together with the DDK subunit Dbf4 are in low abundance in the budding yeast, Saccharomyces cerevisiae. Over-expression of these factors is sufficient to allow late firing origins of replication to initiate early and together with deletion of the histone deacetylase RPD3, promotes the firing of heterochromatic, dormant origins. We demonstrate that the normal programme of origin firing prevents inappropriate checkpoint activation and controls S-phase length in budding yeast. These results explain how the competition for limiting DDK kinase and CDK targets at origins regulates replication initiation kinetics during S-phase and establishes a unique system with which to investigate the biological roles of the temporal programme of origin firing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Origen de Réplica/fisiología , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Quinasas Ciclina-Dependientes/metabolismo , Histona Desacetilasas/metabolismo , Modelos Biológicos , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S/genética , Fase S/fisiología , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
EMBO Rep ; 9(8): 810-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18600234

RESUMEN

DNA double-strand breaks (DSBs) are repaired by non-homologous end joining (NHEJ) or homologous recombination (HR). HR requires 5' DSB end degradation that occurs in the presence of cyclin-dependent kinase (CDK) activity. Here, we show that a lack of any of the NHEJ proteins Yku (Yku70-Yku80), Lif1 or DNA ligase IV (Dnl4) increases 5' DSB end degradation in G1 phase, with ykuDelta cells showing the strongest effect. This increase depends on MRX, the recruitment of which at DSBs is enhanced in ykuDelta G1 cells. DSB processing in G2 is not influenced by the absence of Yku, but it is delayed by Yku overproduction, which also decreases MRX loading on DSBs. Moreover, DSB resection in ykuDelta cells occurs independently of CDK activity, suggesting that it might be promoted by CDK-dependent inhibition of Yku.


Asunto(s)
Ciclo Celular/fisiología , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Western Blotting , Ciclo Celular/genética , Inmunoprecipitación de Cromatina , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fase G1/genética , Fase G1/fisiología , Fase G2/genética , Fase G2/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Mol Cell Biol ; 24(23): 10126-44, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15542824

RESUMEN

In Saccharomyces cerevisiae, Mec1/ATR plays a primary role in sensing and transducing checkpoint signals in response to different types of DNA lesions, while the role of the Tel1/ATM kinase in DNA damage checkpoints is not as well defined. We found that UV irradiation in G(1) in the absence of Mec1 activates a Tel1/MRX-dependent checkpoint, which specifically inhibits the metaphase-to-anaphase transition. Activation of this checkpoint leads to phosphorylation of the downstream checkpoint kinases Rad53 and Chk1, which are required for Tel1-dependent cell cycle arrest, and their adaptor Rad9. The spindle assembly checkpoint protein Mad2 also partially contributes to the G(2)/M arrest of UV-irradiated mec1Delta cells independently of Rad53 phosphorylation and activation. The inability of UV-irradiated mec1Delta cells to undergo anaphase can be relieved by eliminating the anaphase inhibitor Pds1, whose phosphorylation and stabilization in these cells depend on Tel1, suggesting that Pds1 persistence may be responsible for the inability to undergo anaphase. Moreover, while UV irradiation can trigger Mec1-dependent Rad53 phosphorylation and activation in G(1)- and G(2)-arrested cells, Tel1-dependent checkpoint activation requires entry into S phase independently of the cell cycle phase at which cells are UV irradiated, and it is decreased when single-stranded DNA signaling is affected by the rfa1-t11 allele. This indicates that UV-damaged DNA molecules need to undergo structural changes in order to activate the Tel1-dependent checkpoint. Active Clb-cyclin-dependent kinase 1 (CDK1) complexes also participate in triggering this checkpoint and are required to maintain both Mec1- and Tel1-dependent Rad53 phosphorylation, suggesting that they may provide critical phosphorylation events in the DNA damage checkpoint cascade.


Asunto(s)
Anafase , Proteínas Fúngicas/fisiología , Metafase , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , División Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Cromátides/ultraestructura , ADN/metabolismo , Daño del ADN , ADN de Cadena Simple/metabolismo , Fase G1 , Fase G2 , Genotipo , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Securina , Transducción de Señal , Huso Acromático , Factores de Tiempo , Rayos Ultravioleta
4.
Mol Cell Biol ; 30(1): 131-45, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19884341

RESUMEN

Replication fork stalling caused by deoxynucleotide depletion triggers Rad53 phosphorylation and subsequent checkpoint activation, which in turn play a crucial role in maintaining functional DNA replication forks. How cells regulate checkpoint deactivation after inhibition of DNA replication is poorly understood. Here, we show that the budding yeast protein phosphatase Glc7/protein phosphatase 1 (PP1) promotes disappearance of phosphorylated Rad53 and recovery from replication fork stalling caused by the deoxynucleoside triphosphate (dNTP) synthesis inhibitor hydroxyurea (HU). Glc7 is also required for recovery from a double-strand break-induced checkpoint, while it is dispensable for checkpoint inactivation during methylmethane sulfonate exposure, which instead requires the protein phosphatases Pph3, Ptc2, and Ptc3. Furthermore, Glc7 counteracts in vivo histone H2A phosphorylation on serine 129 (gamma H2A) and dephosphorylates gamma H2A in vitro. Finally, the replication recovery defects of HU-treated glc7 mutants are partially rescued by Rad53 inactivation or lack of gamma H2A formation, and the latter also counteracts hyperphosphorylated Rad53 accumulation. We therefore propose that Glc7 activity promotes recovery from replication fork stalling caused by dNTP depletion and that gamma H2A dephosphorylation is a critical Glc7 function in this process.


Asunto(s)
Replicación del ADN , ADN de Hongos/metabolismo , Histonas/metabolismo , Proteína Fosfatasa 1/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Hidroxiurea/farmacología , Mutación , Fosforilación , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
EMBO Rep ; 8(4): 380-7, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17347674

RESUMEN

The main responder to DNA double-strand breaks (DSBs) in mammals is ataxia telangiectasia mutated (ATM), whereas DSB-induced checkpoint activation in budding yeast seems to depend primarily on the ATM and Rad-3-related (ATR) orthologue Mec1. Here, we show that Saccharomyces cerevisiae Tel1, the ATM orthologue, has two functions in checkpoint response to DSBs. First, Tel1 participates, together with the MRX complex, in Mec1-dependent DSB-induced checkpoint activation by increasing the efficiency of single-stranded DNA accumulation at the ends of DSBs, and this checkpoint function can be overcome by overproducing the exonuclease Exo1. Second, Tel1 can activate the checkpoint response to DSBs independently of Mec1, although its signalling activity only becomes apparent when several DSBs are generated. Furthermore, we provide evidence that the kinetics of DSB resection can influence Tel1 activation, indicating that processing of the DSB termini might influence the transition from Tel1/ATM- to Mec1/ATR-dependent checkpoint.


Asunto(s)
Roturas del ADN de Doble Cadena , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/enzimología , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Supresoras de Tumor/fisiología
6.
Mol Microbiol ; 60(5): 1099-108, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16689788

RESUMEN

DNA double-strand breaks (DSBs) are among the most deleterious types of damage that can occur in the genome of eukaryotic cells because failure to repair them can lead to loss of genetic information and chromosome rearrangements. DSBs can arise by failures in DNA replication and by exposure to environmental factors, such as ionizing radiations and radiomimetic chemicals. Moreover, they might arise when telomeres undergo extensive erosion, leading to the activation of the DNA damage response pathways and the onset of apoptosis and/or senescence. Importantly, DSBs can also form in a programmed manner during development. For example, meiotic recombination and rearrangement of the immunoglobulin genes in lymphocytes require the generation of site- or region-specific DSBs through the action of specific endonucleases. Efficient DSB repair is crucial in safeguarding genome integrity, whose maintenance in the face of DSBs involves branched signalling networks that switch on DNA damage checkpoints, activate DNA repair, induce chromatin reorganization and modulate numerous cellular processes. Not surprisingly, defects in these networks result in a variety of diseases ranging from severe genetic disorders to cancer predisposition and accelerated ageing.


Asunto(s)
Rotura Cromosómica , Roturas del ADN de Doble Cadena , Animales , Ciclo Celular/fisiología , Reparación del ADN , Histonas/metabolismo , Humanos , Modelos Genéticos , Recombinación Genética , Transducción de Señal/fisiología
7.
EMBO Rep ; 7(2): 212-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16374511

RESUMEN

Double-strand breaks (DSBs) elicit a DNA damage response, resulting in checkpoint-mediated cell-cycle delay and DNA repair. The Saccharomyces cerevisiae Sae2 protein is known to act together with the MRX complex in meiotic DSB processing, as well as in DNA damage response during the mitotic cell cycle. Here, we report that cells lacking Sae2 fail to turn off both Mec1- and Tel1-dependent checkpoints activated by a single irreparable DSB, and delay Mre11 foci disassembly at DNA breaks, indicating that Sae2 may negatively regulate checkpoint signalling by modulating MRX association at damaged DNA. Consistently, high levels of Sae2 prevent checkpoint activation and impair MRX foci formation in response to unrepaired DSBs. Mec1- and Tel1-dependent Sae2 phosphorylation is necessary for these Sae2 functions, suggesting that the two kinases, once activated, may regulate checkpoint switch off through Sae2-mediated inhibition of MRX signalling.


Asunto(s)
Daño del ADN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Western Blotting , Ciclo Celular , Reparación del ADN , ADN de Hongos/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular , Fosforilación , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
8.
J Biol Chem ; 280(46): 38631-8, 2005 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-16162495

RESUMEN

When eukaryotic chromosomes undergo double strand breaks (DSBs), several evolutionarily conserved proteins, among which the MRX complex, are recruited to the break site, leading to checkpoint activation and DNA repair. The function of the Saccharomyces cerevisiae Sae2 protein, which is known to work together with the MRX complex in meiotic DSB processing and in specific mitotic DSB repair events, is only beginning to be elucidated. Here we provide new insights into the role of Sae2 in mitotic DSB repair. We show that repair by single strand annealing of a single DSB, which is generated by the HO endonuclease between direct repeats, is defective both in the absence of Sae2 and in the presence of the hypomorphic rad50s allele altering the Rad50 subunit of MRX. Moreover, SAE2 overexpression partially suppresses the rad50s single strand annealing repair defects, suggesting that the latter might arise from defective MRX-Sae2 interactions. Finally, SAE2 deletion slows down resection of an HO-induced DSB and impairs DSB end bridging. Thus, Sae2 participates in DSB single strand annealing repair by ensuring both resection and intrachromosomal association of the broken ends.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Alelos , Western Blotting , Cromosomas/ultraestructura , Daño del ADN , Endonucleasas , Evolución Molecular , Eliminación de Gen , Meiosis , Mitosis , Modelos Genéticos , Hibridación de Ácido Nucleico , Plásmidos/metabolismo , Reacción en Cadena de la Polimerasa , Unión Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA