Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 61(3): 474-485, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833088

RESUMEN

Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Adipocitos/metabolismo , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis , Animales , Sitios de Unión , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Cromatina/genética , Biología Computacional , Regulación de la Expresión Génica , Hormona del Crecimiento/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Estrés Oxidativo , PPAR gamma/genética , PPAR gamma/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Transfección
2.
Nucleic Acids Res ; 49(1): 145-157, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33290556

RESUMEN

Mammalian de novo DNA methyltransferases (DNMT) are responsible for the establishment of cell-type-specific DNA methylation in healthy and diseased tissues. Through genome-wide analysis of de novo methylation activity in murine stem cells we uncover that DNMT3A prefers to methylate CpGs followed by cytosines or thymines, while DNMT3B predominantly methylates CpGs followed by guanines or adenines. These signatures are further observed at non-CpG sites, resembling methylation context observed in specialised cell types, including neurons and oocytes. We further show that these preferences result from structural differences in the catalytic domains of the two de novo DNMTs and are not a consequence of differential recruitment to the genome. Molecular dynamics simulations suggest that, in case of human DNMT3A, the preference is due to favourable polar interactions between the flexible Arg836 side chain and the guanine that base-pairs with the cytosine following the CpG. By exchanging arginine to a lysine, the corresponding side chain in DNMT3B, the sequence preference is reversed, confirming the requirement for arginine at this position. This context-dependent enzymatic activity provides additional insights into the complex regulation of DNA methylation patterns.


Asunto(s)
Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/genética , Ratones/genética , Sustitución de Aminoácidos , Animales , Arginina/química , Secuencia de Bases , Cristalografía por Rayos X , Citosina/química , ADN Metiltransferasa 3A , Conjuntos de Datos como Asunto , Células Madre Embrionarias/metabolismo , Técnicas de Inactivación de Genes , Guanina/química , Humanos , Lisina/química , Simulación de Dinámica Molecular , Especificidad por Sustrato , Sulfitos , Secuenciación Completa del Genoma , ADN Metiltransferasa 3B
3.
EMBO J ; 36(23): 3421-3434, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074627

RESUMEN

DNA methylation is a prevalent epigenetic modification involved in transcriptional regulation and essential for mammalian development. While the genome-wide distribution of this mark has been studied to great detail, the mechanisms responsible for its correct deposition, as well as the cause for its aberrant localization in cancers, have not been fully elucidated. Here, we have compared the activity of individual DNMT3A isoforms in mouse embryonic stem and neuronal progenitor cells and report that these isoforms differ in their genomic binding and DNA methylation activity at regulatory sites. We identify that the longer isoform DNMT3A1 preferentially localizes to the methylated shores of bivalent CpG island promoters in a tissue-specific manner. The isoform-specific targeting of DNMT3A1 coincides with elevated hydroxymethylcytosine (5-hmC) deposition, suggesting an involvement of this isoform in mediating turnover of DNA methylation at these sites. Through genetic deletion and rescue experiments, we demonstrate that this isoform-specific recruitment plays a role in de novo DNA methylation at CpG island shores, with potential implications on H3K27me3-mediated regulation of developmental genes.


Asunto(s)
Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Animales , Sitios de Unión , Diferenciación Celular , Línea Celular , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
4.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34502082

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) is an incurable paediatric malignancy. Identifying the molecular drivers of DIPG progression is of the utmost importance. Long non-coding RNAs (lncRNAs) represent a large family of disease- and tissue-specific transcripts, whose functions have not yet been elucidated in DIPG. Herein, we studied the oncogenic role of the development-associated H19 lncRNA in DIPG. Bioinformatic analyses of clinical datasets were used to measure the expression of H19 lncRNA in paediatric high-grade gliomas (pedHGGs). The expression and sub-cellular location of H19 lncRNA were validated in DIPG cell lines. Locked nucleic acid antisense oligonucleotides were designed to test the function of H19 in DIPG cells. We found that H19 expression was higher in DIPG vs. normal brain tissue and other pedHGGs. H19 knockdown resulted in decreased cell proliferation and survival in DIPG cells. Mechanistically, H19 buffers let-7 microRNAs, resulting in the up-regulation of oncogenic let-7 target (e.g., SULF2 and OSMR). H19 is the first functionally characterized lncRNA in DIPG and a promising therapeutic candidate for treating this incurable cancer.


Asunto(s)
Neoplasias del Tronco Encefálico/genética , Proliferación Celular , Glioma/genética , ARN Largo no Codificante/metabolismo , Neoplasias del Tronco Encefálico/metabolismo , Neoplasias del Tronco Encefálico/patología , Células Cultivadas , Regulación Neoplásica de la Expresión Génica , Glioma/metabolismo , Glioma/patología , Histonas/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Mutación , ARN Largo no Codificante/genética
5.
Nucleic Acids Res ; 43(17): e112, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26007658

RESUMEN

Any profound comprehension of gene function requires detailed information about the subcellular localization, molecular interactions and spatio-temporal dynamics of gene products. We developed a multifunctional integrase (MIN) tag for rapid and versatile genome engineering that serves not only as a genetic entry site for the Bxb1 integrase but also as a novel epitope tag for standardized detection and precipitation. For the systematic study of epigenetic factors, including Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged embryonic stem cell lines and created a toolbox of prefabricated modules that can be integrated via Bxb1-mediated recombination. We used these functional modules to study protein interactions and their spatio-temporal dynamics as well as gene expression and specific mutations during cellular differentiation and in response to external stimuli. Our genome engineering strategy provides a versatile open platform for efficient generation of multiple isogenic cell lines to study gene function under physiological conditions.


Asunto(s)
Ingeniería Celular/métodos , Animales , Anticuerpos Monoclonales , Sistemas CRISPR-Cas , Diferenciación Celular/genética , Línea Celular , Células Madre Embrionarias/metabolismo , Expresión Génica , Sitios Genéticos , Genómica/métodos , Integrasas/genética , Integrasas/inmunología , Integrasas/metabolismo , Mutación , Ratas , Recombinación Genética
6.
Nat Biotechnol ; 38(6): 728-736, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32123383

RESUMEN

Chromatin modifications regulate genome function by recruiting proteins to the genome. However, the protein composition at distinct chromatin modifications has yet to be fully characterized. In this study, we used natural protein domains as modular building blocks to develop engineered chromatin readers (eCRs) selective for DNA methylation and histone tri-methylation at H3K4, H3K9 and H3K27 residues. We first demonstrated their utility as selective chromatin binders in living cells by stably expressing eCRs in mouse embryonic stem cells and measuring their subnuclear localization, genomic distribution and histone-modification-binding preference. By fusing eCRs to the biotin ligase BASU, we established ChromID, a method for identifying the chromatin-dependent protein interactome on the basis of proximity biotinylation, and applied it to distinct chromatin modifications in mouse stem cells. Using a synthetic dual-modification reader, we also uncovered the protein composition at bivalently modified promoters marked by H3K4me3 and H3K27me3. These results highlight the ability of ChromID to obtain a detailed view of protein interaction networks on chromatin.


Asunto(s)
Cromatina , Histonas , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Proteómica/métodos , Animales , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Metilación de ADN/genética , Células Madre Embrionarias , Histonas/química , Histonas/genética , Histonas/metabolismo , Ratones
8.
Methods Mol Biol ; 1766: 157-174, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29605852

RESUMEN

Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is currently the method of choice to determine binding sites of chromatin-associated factors in a genome-wide manner. Here, we describe a method to investigate the binding preferences of mammalian DNA methyltransferases (DNMT) based on ChIP-seq using biotin-tagging. Stringent ChIP of DNMT proteins based on the strong interaction between biotin and avidin circumvents limitations arising from low antibody specificity and ensures reproducible enrichment. DNMT-bound DNA fragments are ligated to sequencing adaptors, amplified and sequenced on a high-throughput sequencing instrument. Bioinformatic analysis gives valuable information about the binding preferences of DNMTs genome-wide and around promoter regions. This method is unconventional due to the use of genetically engineered cells; however, it allows specific and reliable determination of DNMT binding.


Asunto(s)
Metilación de ADN , Metilasas de Modificación del ADN/genética , ADN/genética , Estudio de Asociación del Genoma Completo , Análisis por Matrices de Proteínas , Animales , Avidina/química , Sitios de Unión , Biotina/química , Cromatina/química , Cromatina/genética , ADN/química , Metilasas de Modificación del ADN/química , Humanos , Regiones Promotoras Genéticas , Programas Informáticos
10.
J Mol Biol ; 429(10): 1459-1475, 2017 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-28214512

RESUMEN

DNA methylation is one of the most extensively studied epigenetic marks. It is involved in transcriptional gene silencing and plays important roles during mammalian development. Its perturbation is often associated with human diseases. In mammalian genomes, DNA methylation is a prevalent modification that decorates the majority of cytosines. It is found at the promoters and enhancers of inactive genes, at repetitive elements, and within transcribed gene bodies. Its presence at promoters is dynamically linked to gene activity, suggesting that it could directly influence gene expression patterns and cellular identity. The genome-wide distribution and dynamic behaviour of this mark have been studied in great detail in a variety of tissues and cell lines, including early embryonic development and in embryonic stem cells. In combination with functional studies, these genome-wide maps of DNA methylation revealed interesting features of this mark and provided important insights into its dynamic nature and potential functional role in genome regulation. In this review, we discuss how these recent observations, in combination with insights obtained from biochemical and functional genetics studies, have expanded our current knowledge about the regulation and context-dependent roles of DNA methylation in mammalian genomes.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Animales , Citosina/metabolismo , ADN/genética , ADN/metabolismo , Silenciador del Gen , Humanos , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA