Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Ther ; 31(7): 2089-2104, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-36945773

RESUMEN

CAR T cells recognizing CD19 effectively treat relapsed and refractory B-ALL and DLBCL. However, CD19 loss is a frequent cause of relapse. Simultaneously targeting a second antigen, CD22, may decrease antigen escape, but is challenging: its density is approximately 10-fold less than CD19, and its large structure may hamper immune synapse formation. The characteristics of the optimal CD22 CAR are underexplored. We generated 12 distinct CD22 antibodies and tested CARs derived from them to identify a CAR based on the novel 9A8 antibody, which was sensitive to low CD22 density and lacked tonic signaling. We found no correlation between affinity or membrane proximity of recognition epitope within Ig domains 3-6 of CD22 with CART function. The optimal strategy for CD19/CD22 CART co-targeting is undetermined. Co-administration of CD19 and CD22 CARs is costly; single CARs targeting CD19 and CD22 are challenging to construct. The co-expression of two CARs has previously been achieved using bicistronic vectors. Here, we generated a dual CART product by co-transduction with 9A8-41BBζ and CAT-41BBζ (obe-cel), the previously described CD19 CAR. CAT/9A8 CART eliminated single- and double-positive target cells in vitro and eliminated CD19- tumors in vivo. CAT/9A8 CART is being tested in a phase I clinical study (NCT02443831).


Asunto(s)
Linfoma de Burkitt , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T , Recurrencia Local de Neoplasia , Inmunoterapia Adoptiva , Proteínas Adaptadoras Transductoras de Señales , Antígenos CD19 , Anticuerpos , Lectina 2 Similar a Ig de Unión al Ácido Siálico
3.
Sci Rep ; 11(1): 21902, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754016

RESUMEN

Chimeric antigen receptor (CAR) T cells are a promising form of cancer immunotherapy, although they are often associated with severe toxicities. Here, we present a split-CAR design incorporating separate antigen recognition and intracellular signaling domains. These exploit the binding between the tetracycline repressor protein and a small peptide sequence (TIP) to spontaneously assemble as a functional CAR. Addition of the FDA-approved, small molecule antibiotic minocycline, acts as an "off-switch" by displacing the signaling domain and down-tuning CAR T activity. Here we describe the optimization of this split-CAR approach to generate a CAR in which cytotoxicity, cytokine secretion and proliferation can be inhibited in a dose-dependent and reversible manner. Inhibition is effective during on-going CAR T cell activation and inhibits activation and tumor control in vivo. This work shows how optimization of split-CAR structure affects function and adds a novel design allowing easy CAR inhibition through an FDA-approved small molecule.


Asunto(s)
Minociclina/farmacología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Animales , Técnicas de Cocultivo , Femenino , Células HEK293 , Humanos , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transducción de Señal , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Med ; 25(9): 1408-1414, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31477906

RESUMEN

Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1-5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40-60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19- clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9-11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1-4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831 ), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectively.


Asunto(s)
Antígenos CD19/administración & dosificación , Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/inmunología , Adolescente , Antígenos CD19/genética , Antígenos CD19/inmunología , Niño , Preescolar , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Recurrencia , Linfocitos T/patología , Secuenciación del Exoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA