Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Med Inform Decis Mak ; 22(Suppl 2): 348, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433189

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW). METHODS: We developed five algorithms: a rule-based algorithm using only structured data (baseline algorithm) and four algorithms using different NLP models. The first NLP model applied simple regular expression for keywords search combined with structured data. The other three NLP models were based on regularized logistic regression and used different sets of features including positive mention of concept unique identifiers (CUIs), number of appearances of CUIs, and a mixture of three components (i.e. a curated list of CUIs, regular expression concepts, structured data) respectively. The baseline algorithm and the best performing NLP algorithm were externally validated on a dataset from Vanderbilt University Medical Center (VUMC). RESULTS: Our best performing NLP model incorporated features from both structured data, regular expression concepts, and mapped concept unique identifiers (CUIs) and showed improved F measure in both the NMEDW (0.41 vs 0.79) and VUMC (0.52 vs 0.93) datasets compared to the baseline lupus nephritis algorithm. CONCLUSION: Our NLP MetaMap mixed model improved the F-measure greatly compared to the structured data only algorithm in both internal and external validation datasets. The NLP algorithms can serve as powerful tools to accurately identify lupus nephritis phenotype in EHR for clinical research and better targeted therapies.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/diagnóstico , Registros Electrónicos de Salud , Procesamiento de Lenguaje Natural , Fenotipo , Enfermedades Raras
2.
Clin Immunol ; 252: 109634, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37150240

RESUMEN

Over two years into the COVID-19 pandemic, the human immune response to SARS-CoV-2 during the active disease phase has been extensively studied. However, the long-term impact after recovery, which is critical to advance our understanding SARS-CoV-2 and COVID-19-associated long-term complications, remains largely unknown. Herein, we characterized single-cell profiles of circulating immune cells in the peripheral blood of 100 patients, including convalescent COVID-19 and sero-negative controls. Flow cytometry analyses revealed reduced frequencies of both short-lived monocytes and long-lived regulatory T (Treg) cells within the patients who have recovered from severe COVID-19. sc-RNA seq analysis identifies seven heterogeneous clusters of monocytes and nine Treg clusters featuring distinct molecular signatures in association with COVID-19 severity. Asymptomatic patients contain the most abundant clusters of monocytes and Tregs expressing high CD74 or IFN-responsive genes. In contrast, the patients recovered from a severe disease have shown two dominant inflammatory monocyte clusters featuring S100 family genes: one monocyte cluster of S100A8 & A9 coupled with high HLA-I and another cluster of S100A4 & A6 with high HLA-II genes, a specific non-classical monocyte cluster with distinct IFITM family genes, as well as a unique TGF-ß high Treg Cluster. The outpatients and seronegative controls share most of the monocyte and Treg clusters patterns with high expression of HLA genes. Surprisingly, while presumably short-lived monocytes appear to have sustained alterations over 4 months, the decreased frequencies of long-lived Tregs (high HLA-DRA and S100A6) in the outpatients restore over the tested convalescent time (≥ 4 months). Collectively, our study identifies sustained and dynamically altered monocytes and Treg clusters with distinct molecular signatures after recovery, associated with COVID-19 severity.


Asunto(s)
COVID-19 , Monocitos , Humanos , COVID-19/metabolismo , Linfocitos T Reguladores , Pandemias , SARS-CoV-2
3.
J Biomed Inform ; 144: 104442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429512

RESUMEN

OBJECTIVE: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). METHODS: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000 and 2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting into sections, and then pre-trained a BERT model for AD (named AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. All sections of a patient were embedded into a vector representation by AD-BERT and then combined by global MaxPooling and a fully connected network to compute the probability of MCI-to-AD progression. For validation, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. RESULTS: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.849 and F1 score of 0.440 on NMEDW dataset, and AUC of 0.883 and F1 score of 0.680 on WCM dataset. CONCLUSION: The use of EHRs for AD-related research is promising, and AD-BERT shows superior predictive performance in modeling MCI-to-AD progression prediction. Our study demonstrates the utility of pre-trained language models and clinical notes in predicting MCI-to-AD progression, which could have important implications for improving early detection and intervention for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Disfunción Cognitiva/diagnóstico , Progresión de la Enfermedad
4.
Crit Care ; 26(1): 197, 2022 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-35786445

RESUMEN

BACKGROUND: Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well studied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes in sepsis. METHODS: We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were compared between subphenotypes and a random forest model was developed to predict subphenotype membership at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity analyses were performed with alternative clustering methodologies. RESULTS: A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening (n = 612, 13.1%), Delayed Worsening (n = 960, 20.5%), Rapidly Improving (n = 1932, 41.3%), and Delayed Improving (n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subphenotypes. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value < 0.001), despite a lower SOFA (mean: 4.5) at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger numbers. CONCLUSIONS: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated therapeutic targets and identify more precise populations and endpoints for clinical trials.


Asunto(s)
Insuficiencia Multiorgánica , Sepsis , Mortalidad Hospitalaria , Hospitalización , Humanos , Unidades de Cuidados Intensivos
5.
J Biomed Inform ; 127: 104000, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35104644

RESUMEN

Laboratory testing and medication prescription are two of the most important routines in daily clinical practice. Developing an artificial intelligence system that can automatically make lab test imputations and medication recommendations can save costs on potentially redundant lab tests and inform physicians of a more effective prescription. We present an intelligent medical system (named MedGCN) that can automatically recommend the patients' medications based on their incomplete lab tests, and can even accurately estimate the lab values that have not been taken. In our system, we integrate the complex relations between multiple types of medical entities with their inherent features in a heterogeneous graph. Then we model the graph to learn a distributed representation for each entity in the graph based on graph convolutional networks (GCN). By the propagation of graph convolutional networks, the entity representations can incorporate multiple types of medical information that can benefit multiple medical tasks. Moreover, we introduce a cross regularization strategy to reduce overfitting for multi-task training by the interaction between the multiple tasks. In this study, we construct a graph to associate 4 types of medical entities, i.e., patients, encounters, lab tests, and medications, and applied a graph neural network to learn node embeddings for medication recommendation and lab test imputation. we validate our MedGCN model on two real-world datasets: NMEDW and MIMIC-III. The experimental results on both datasets demonstrate that our model can outperform the state-of-the-art in both tasks. We believe that our innovative system can provide a promising and reliable way to assist physicians to make medication prescriptions and to save costs on potentially redundant lab tests.


Asunto(s)
Inteligencia Artificial , Redes Neurales de la Computación , Humanos , Aprendizaje
6.
BMC Bioinformatics ; 22(Suppl 4): 491, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34689757

RESUMEN

BACKGROUND: Genetic information is becoming more readily available and is increasingly being used to predict patient cancer types as well as their subtypes. Most classification methods thus far utilize somatic mutations as independent features for classification and are limited by study power. We aim to develop a novel method to effectively explore the landscape of genetic variants, including germline variants, and small insertions and deletions for cancer type prediction. RESULTS: We proposed DeepCues, a deep learning model that utilizes convolutional neural networks to unbiasedly derive features from raw cancer DNA sequencing data for disease classification and relevant gene discovery. Using raw whole-exome sequencing as features, germline variants and somatic mutations, including insertions and deletions, were interactively amalgamated for feature generation and cancer prediction. We applied DeepCues to a dataset from TCGA to classify seven different types of major cancers and obtained an overall accuracy of 77.6%. We compared DeepCues to conventional methods and demonstrated a significant overall improvement (p < 0.001). Strikingly, using DeepCues, the top 20 breast cancer relevant genes we have identified, had a 40% overlap with the top 20 known breast cancer driver genes. CONCLUSION: Our results support DeepCues as a novel method to improve the representational resolution of DNA sequencings and its power in deriving features from raw sequences for cancer type prediction, as well as discovering new cancer relevant genes.


Asunto(s)
Aprendizaje Profundo , Neoplasias , Humanos , Neoplasias/genética , Oncogenes , Análisis de Secuencia de ADN , Secuenciación del Exoma
7.
Bioinformatics ; 35(8): 1395-1403, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30239588

RESUMEN

MOTIVATION: Hypertension is a heterogeneous syndrome in need of improved subtyping using phenotypic and genetic measurements with the goal of identifying subtypes of patients who share similar pathophysiologic mechanisms and may respond more uniformly to targeted treatments. Existing machine learning approaches often face challenges in integrating phenotype and genotype information and presenting to clinicians an interpretable model. We aim to provide informed patient stratification based on phenotype and genotype features. RESULTS: In this article, we present a hybrid non-negative matrix factorization (HNMF) method to integrate phenotype and genotype information for patient stratification. HNMF simultaneously approximates the phenotypic and genetic feature matrices using different appropriate loss functions, and generates patient subtypes, phenotypic groups and genetic groups. Unlike previous methods, HNMF approximates phenotypic matrix under Frobenius loss, and genetic matrix under Kullback-Leibler (KL) loss. We propose an alternating projected gradient method to solve the approximation problem. Simulation shows HNMF converges fast and accurately to the true factor matrices. On a real-world clinical dataset, we used the patient factor matrix as features and examined the association of these features with indices of cardiac mechanics. We compared HNMF with six different models using phenotype or genotype features alone, with or without NMF, or using joint NMF with only one type of loss We also compared HNMF with 3 recently published methods for integrative clustering analysis, including iClusterBayes, Bayesian joint analysis and JIVE. HNMF significantly outperforms all comparison models. HNMF also reveals intuitive phenotype-genotype interactions that characterize cardiac abnormalities. AVAILABILITY AND IMPLEMENTATION: Our code is publicly available on github at https://github.com/yuanluo/hnmf. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Hipertensión , Teorema de Bayes , Genotipo , Humanos , Fenotipo
8.
J Biomed Inform ; 96: 103247, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31271844

RESUMEN

OBJECTIVES: Extracting genetic information from a full range of sequencing data is important for understanding disease. We propose a novel method to effectively explore the landscape of genetic mutations and aggregate them to predict cancer type. DESIGN: We applied non-smooth non-negative matrix factorization (nsNMF) and support vector machine (SVM) to utilize the full range of sequencing data, aiming to better aggregate genetic mutations and improve their power to predict disease type. More specifically, we introduce a novel classifier to distinguish cancer types using somatic mutations obtained from whole-exome sequencing data. Mutations were identified from multiple cancers and scored using SIFT, PP2, and CADD, and collapsed at the individual gene level. nsNMF was then applied to reduce dimensionality and obtain coefficient and basis matrices. A feature matrix was derived from the obtained matrices to train a classifier for cancer type classification with the SVM model. RESULTS: We have demonstrated that the classifier was able to distinguish four cancer types with reasonable accuracy. In five-fold cross-validations using mutation counts as features, the average prediction accuracy was 80% (SEM = 0.1%), significantly outperforming baselines and outperforming models using mutation scores as features. CONCLUSION: Using the factor matrices derived from the nsNMF, we identified multiple genes and pathways that are significantly associated with each cancer type. This study presents a generic and complete pipeline to study the associations between somatic mutations and cancers. The proposed method can be adapted to other studies for disease status classification and pathway discovery.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias/clasificación , Neoplasias/genética , Máquina de Vectores de Soporte , Algoritmos , Línea Celular Tumoral , Bases de Datos Genéticas , Diagnóstico por Computador , Exoma , Humanos , Proyectos Piloto , Análisis de Regresión , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
9.
BMC Med Inform Decis Mak ; 19(Suppl 3): 71, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30943960

RESUMEN

BACKGROUND: Clinical text classification is an fundamental problem in medical natural language processing. Existing studies have cocnventionally focused on rules or knowledge sources-based feature engineering, but only a limited number of studies have exploited effective representation learning capability of deep learning methods. METHODS: In this study, we propose a new approach which combines rule-based features and knowledge-guided deep learning models for effective disease classification. Critical Steps of our method include recognizing trigger phrases, predicting classes with very few examples using trigger phrases and training a convolutional neural network (CNN) with word embeddings and Unified Medical Language System (UMLS) entity embeddings. RESULTS: We evaluated our method on the 2008 Integrating Informatics with Biology and the Bedside (i2b2) obesity challenge. The results demonstrate that our method outperforms the state-of-the-art methods. CONCLUSION: We showed that CNN model is powerful for learning effective hidden features, and CUIs embeddings are helpful for building clinical text representations. This shows integrating domain knowledge into CNN models is promising.


Asunto(s)
Codificación Clínica/clasificación , Procesamiento de Lenguaje Natural , Redes Neurales de la Computación , Aprendizaje Profundo , Humanos , Bases del Conocimiento , Obesidad , Unified Medical Language System
10.
BMC Med Inform Decis Mak ; 19(Suppl 3): 78, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30943974

RESUMEN

BACKGROUND: This paper presents a portable phenotyping system that is capable of integrating both rule-based and statistical machine learning based approaches. METHODS: Our system utilizes UMLS to extract clinically relevant features from the unstructured text and then facilitates portability across different institutions and data systems by incorporating OHDSI's OMOP Common Data Model (CDM) to standardize necessary data elements. Our system can also store the key components of rule-based systems (e.g., regular expression matches) in the format of OMOP CDM, thus enabling the reuse, adaptation and extension of many existing rule-based clinical NLP systems. We experimented with our system on the corpus from i2b2's Obesity Challenge as a pilot study. RESULTS: Our system facilitates portable phenotyping of obesity and its 15 comorbidities based on the unstructured patient discharge summaries, while achieving a performance that often ranked among the top 10 of the challenge participants. CONCLUSION: Our system of standardization enables a consistent application of numerous rule-based and machine learning based classification techniques downstream across disparate datasets which may originate across different institutions and data systems.


Asunto(s)
Almacenamiento y Recuperación de la Información , Aprendizaje Automático , Procesamiento de Lenguaje Natural , Registros Electrónicos de Salud , Humanos , Almacenamiento y Recuperación de la Información/métodos , Obesidad , Proyectos Piloto
13.
Bioengineering (Basel) ; 10(7)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37508855

RESUMEN

This study aims to investigate the reliability of radiomic features extracted from contrast-enhanced computer tomography (CT) by AX-Unet, a pancreas segmentation model, to analyse the recurrence of pancreatic ductal adenocarcinoma (PDAC) after radical surgery. In this study, we trained an AX-Unet model to extract the radiomic features from preoperative contrast-enhanced CT images on a training set of 205 PDAC patients. Then we evaluated the segmentation ability of AX-Unet and the relationship between radiomic features and clinical characteristics on an independent testing set of 64 patients with clear prognoses. The lasso regression analysis was used to screen for variables of interest affecting patients' post-operative recurrence, and the Cox proportional risk model regression analysis was used to screen for risk factors and create a nomogram prediction model. The proposed model achieved an accuracy of 85.9% for pancreas segmentation, meeting the requirements of most clinical applications. Radiomic features were found to be significantly correlated with clinical characteristics such as lymph node metastasis, resectability status, and abnormally elevated serum carbohydrate antigen 19-9 (CA 19-9) levels. Specifically, variance and entropy were associated with the recurrence rate (p < 0.05). The AUC for the nomogram predicting whether the patient recurred after surgery was 0.92 (95% CI: 0.78-0.99) and the C index was 0.62 (95% CI: 0.48-0.78). The AX-Unet pancreas segmentation model shows promise in analysing recurrence risk factors after radical surgery for PDAC. Additionally, our findings suggest that a dynamic nomogram model based on AX-Unet can provide pancreatic oncologists with more accurate prognostic assessments for their patients.

14.
Nat Biotechnol ; 41(1): 128-139, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217030

RESUMEN

Studying viral-host protein-protein interactions can facilitate the discovery of therapies for viral infection. We use high-throughput yeast two-hybrid experiments and mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of 739 high-confidence binary and co-complex interactions, validating 218 known SARS-CoV-2 host factors and revealing 361 novel ones. Our results show the highest overlap of interaction partners between published datasets and of genes differentially expressed in samples from COVID-19 patients. We identify an interaction between the viral protein ORF3a and the human transcription factor ZNF579, illustrating a direct viral impact on host transcription. We perform network-based screens of >2,900 FDA-approved or investigational drugs and identify 23 with significant network proximity to SARS-CoV-2 host factors. One of these drugs, carvedilol, shows clinical benefits for COVID-19 patients in an electronic health records analysis and antiviral properties in a human lung cell line infected with SARS-CoV-2. Our study demonstrates the value of network systems biology to understand human-virus interactions and provides hits for further research on COVID-19 therapeutics.


Asunto(s)
COVID-19 , Mapeo de Interacción de Proteínas , Humanos , Línea Celular , Regulación de la Expresión Génica , SARS-CoV-2/genética , Proteínas Virales/metabolismo
15.
Sci Rep ; 13(1): 8102, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208478

RESUMEN

The objective of this study was to investigate the potential association between the use of four frequently prescribed drug classes, namely antihypertensive drugs, statins, selective serotonin reuptake inhibitors, and proton-pump inhibitors, and the likelihood of disease progression from mild cognitive impairment (MCI) to dementia using electronic health records (EHRs). We conducted a retrospective cohort study using observational EHRs from a cohort of approximately 2 million patients seen at a large, multi-specialty urban academic medical center in New York City, USA between 2008 and 2020 to automatically emulate the randomized controlled trials. For each drug class, two exposure groups were identified based on the prescription orders documented in the EHRs following their MCI diagnosis. During follow-up, we measured drug efficacy based on the incidence of dementia and estimated the average treatment effect (ATE) of various drugs. To ensure the robustness of our findings, we confirmed the ATE estimates via bootstrapping and presented associated 95% confidence intervals (CIs). Our analysis identified 14,269 MCI patients, among whom 2501 (17.5%) progressed to dementia. Using average treatment estimation and bootstrapping confirmation, we observed that drugs including rosuvastatin (ATE = - 0.0140 [- 0.0191, - 0.0088], p value < 0.001), citalopram (ATE = - 0.1128 [- 0.125, - 0.1005], p value < 0.001), escitalopram (ATE = - 0.0560 [- 0.0615, - 0.0506], p value < 0.001), and omeprazole (ATE = - 0.0201 [- 0.0299, - 0.0103], p value < 0.001) have a statistically significant association in slowing the progression from MCI to dementia. The findings from this study support the commonly prescribed drugs in altering the progression from MCI to dementia and warrant further investigation.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico , Estudios Retrospectivos , Registros Electrónicos de Salud , Progresión de la Enfermedad , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/diagnóstico , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
IEEE Trans Med Imaging ; 41(8): 1990-2003, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35192461

RESUMEN

Image representation is a fundamental task in computer vision. However, most of the existing approaches for image representation ignore the relations between images and consider each input image independently. Intuitively, relations between images can help to understand the images and maintain model consistency over related images, leading to better explainability. In this paper, we consider modeling the image-level relations to generate more informative image representations, and propose ImageGCN, an end-to-end graph convolutional network framework for inductive multi-relational image modeling. We apply ImageGCN to chest X-ray images where rich relational information is available for disease identification. Unlike previous image representation models, ImageGCN learns the representation of an image using both its original pixel features and its relationship with other images. Besides learning informative representations for images, ImageGCN can also be used for object detection in a weakly supervised manner. The experimental results on 3 open-source x-ray datasets, ChestX-ray14, CheXpert and MIMIC-CXR demonstrate that ImageGCN can outperform respective baselines in both disease identification and localization tasks and can achieve comparable and often better results than the state-of-the-art methods.


Asunto(s)
Redes Neurales de la Computación , Tórax , Radiografía , Tórax/diagnóstico por imagen , Rayos X
17.
Front Oncol ; 12: 894970, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35719964

RESUMEN

Image segmentation plays an essential role in medical imaging analysis such as tumor boundary extraction. Recently, deep learning techniques have dramatically improved performance for image segmentation. However, an important factor preventing deep neural networks from going further is the information loss during the information propagation process. In this article, we present AX-Unet, a deep learning framework incorporating a modified atrous spatial pyramid pooling module to learn the location information and to extract multi-level contextual information to reduce information loss during downsampling. We also introduce a special group convolution operation on the feature map at each level to achieve information decoupling between channels. In addition, we propose an explicit boundary-aware loss function to tackle the blurry boundary problem. We evaluate our model on two public Pancreas-CT datasets, NIH Pancreas-CT dataset, and the pancreas part in medical segmentation decathlon (MSD) medical dataset. The experimental results validate that our model can outperform the state-of-the-art methods in pancreas CT image segmentation. By comparing the extracted feature output of our model, we find that the pancreatic region of normal people and patients with pancreatic tumors shows significant differences. This could provide a promising and reliable way to assist physicians for the screening of pancreatic tumors.

18.
Res Sq ; 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35677070

RESUMEN

Physical interactions between viral and host proteins are responsible for almost all aspects of the viral life cycle and the host's immune response. Studying viral-host protein-protein interactions is thus crucial for identifying strategies for treatment and prevention of viral infection. Here, we use high-throughput yeast two-hybrid and affinity purification followed by mass spectrometry to generate a comprehensive SARS-CoV-2-human protein-protein interactome network consisting of both binary and co-complex interactions. We report a total of 739 high-confidence interactions, showing the highest overlap of interaction partners among published datasets as well as the highest overlap with genes differentially expressed in samples (such as upper airway and bronchial epithelial cells) from patients with SARS-CoV-2 infection. Showcasing the utility of our network, we describe a novel interaction between the viral accessory protein ORF3a and the host zinc finger transcription factor ZNF579 to illustrate a SARS-CoV-2 factor mediating a direct impact on host transcription. Leveraging our interactome, we performed network-based drug screens for over 2,900 FDA-approved/investigational drugs and obtained a curated list of 23 drugs that had significant network proximities to SARS-CoV-2 host factors, one of which, carvedilol, showed promising antiviral properties. We performed electronic health record-based validation using two independent large-scale, longitudinal COVID-19 patient databases and found that carvedilol usage was associated with a significantly lowered probability (17%-20%, P < 0.001) of obtaining a SARS-CoV-2 positive test after adjusting various confounding factors. Carvedilol additionally showed anti-viral activity against SARS-CoV-2 in a human lung epithelial cell line [half maximal effective concentration (EC 50 ) value of 4.1 µM], suggesting a mechanism for its beneficial effect in COVID-19. Our study demonstrates the value of large-scale network systems biology approaches for extracting biological insight from complex biological processes.

19.
Cell Rep Med ; 3(10): 100749, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36223777

RESUMEN

Effective drugs for atrial fibrillation (AF) are lacking, resulting in significant morbidity and mortality. This study demonstrates that network proximity analysis of differentially expressed genes from atrial tissue to drug targets can help prioritize repurposed drugs for AF. Using enrichment analysis of drug-gene signatures and functional testing in human inducible pluripotent stem cell (iPSC)-derived atrial-like cardiomyocytes, we identify metformin as a top repurposed drug candidate for AF. Using the active compactor, a new design analysis of large-scale longitudinal electronic health record (EHR) data, we determine that metformin use is significantly associated with a reduced risk of AF (odds ratio = 0.48, 95%, confidence interval [CI] 0.36-0.64, p < 0.001) compared with standard treatments for diabetes. This study utilizes network medicine methodologies to identify repurposed drugs for AF treatment and identifies metformin as a candidate drug.


Asunto(s)
Fibrilación Atrial , Metformina , Humanos , Fibrilación Atrial/tratamiento farmacológico , Metformina/farmacología , Transcriptoma , Atrios Cardíacos
20.
Cell Rep ; 41(9): 111717, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450252

RESUMEN

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology and therapeutic discovery remains a major challenge for Alzheimer's disease (AD). We present a network topology-based deep learning framework to identify disease-associated genes (NETTAG). We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, promoter regions, open chromatin, and promoter flanking regions under the protein-protein interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. Combining network-based prediction and retrospective case-control observations with 10 million individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin using an active-comparator design (95% confidence interval 0.51-0.63, p < 0.0001). In summary, NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to identify pathobiology and drug repurposing in AD.


Asunto(s)
Enfermedad de Alzheimer , Aprendizaje Profundo , Humanos , Estudio de Asociación del Genoma Completo , Reposicionamiento de Medicamentos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Gemfibrozilo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA