Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Physiol Biochem ; 50(3): 1140-1153, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30355907

RESUMEN

BACKGROUND/AIMS: Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide. This study aimed to identify overlapping or diverging dysregulated genes, lncRNAs, miRNAs and signaling pathways in smoking and non-smoking chronic obstructive pulmonary disease (COPD). METHODS: Compared to normal controls, we identified the shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in smoking and non-smoking COPD by RNA-sequencing and bioinformatics analysis. Functional annotation of DEmRNAs were performed. Both cis and trans-target DEmRNAs of DElncRNAs were identified. The target DEmRNAs of DEmiRNAs were identified as well. The DEmiRNA-DEmRNA-DElncRNA interaction network was constructed. QRT-PCR was performed to validat the selected DEmiRNAs, DEmRNA and DElncRNAs in COPD. RESULTS: Compared to normal control, 1234 DEmRNAs, 96 DElncRNAs and 151 DEmiRNAs were identified in non-smoking patients with COPD; 670 DEmRNAs, 44 DElncRNAs and 63 DEmiRNAs were identified in smoking patients with COPD. Leukocyte transendothelial migration and pathways in cancer were significantly enriched pathways in non-smoking and smoking COPD, respectively. MiR-122-5p-A2M-LINC00987/A2M-AS1/ linc0061 interactions might play key roles in COPD irrespective with the smoking status. Let-7-ADRB1-HLA-DQB1-AS1 might play a key role in the pathogenesis of smoking COPD while miR-218-5p/miR15a-RORA-LOC101928100/LINC00861 and miR-218-5p/miR15a-TGFß3-RORA-AS1 interactions might involve with non-smoking COPD. CONCLUSION: We identified the shared and diverging genes, lncRNAs, miRNAs and their interactions and pathways in smoking and non-smoking COPD which provided clues for understanding the mechanism and developing novel diagnostic and therapeutic strategies for COPD.


Asunto(s)
MicroARNs/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Fumar , Adulto , Anciano , Anciano de 80 o más Años , Biología Computacional , Femenino , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/metabolismo
2.
J Inflamm Res ; 16: 6211-6225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145010

RESUMEN

Introduction: Combined allergic rhinitis and asthma syndrome (CARAS) is a concurrent clinical or subclinical allergic symptom of diseases of the upper and lower respiratory tract. This study is the first to explore the expression profiles of mRNA, lncRNA, and circRNA in CARAS using RNA sequencing, which may provide insight into the mechanisms underlying CARAS. Material and Methods: Whole blood samples from nine participants (three CARAS patients, three AR patients, and three normal control participants) were subjected to perform RNA sequencing, followed by identification of differentially expressed lncRNAs (DElncRNAs), circRNAs (DEcircRNAs) and mRNAs (DEmRNAs). Then, lncRNA/circRNA-mRNA regulatory pairs were constructed, followed by functional analysis, immune infiltration analysis, drug prediction, and expression validation with RT-qPCR and ELISA. Results: The results showed that 61 DEmRNAs, 23 DElncRNAs and 3 DEcircRNAs may be related to the occurrence and development of CARAS. KRT8 may be implicated in the development of AR into CARAS. Three immunity-related mRNAs (IDO1, CYSLTR2, and TEC) and two hypoxia-related mRNAs (TKTL1 and VLDLR) were associated with the occurrence and development of CARAS. TEC may be considered a drug target for Dasatinib in treating CARAS. Several lncRNA/circRNA-mRNA regulatory pairs were identified in CARAS, including LINC00452/MIR4280HG/hsa_circ_0007272/hsa_circ_0070934-CLC, HEATR6-DT/LINC00639/LINC01783/hsa_circ_0008903-TEC, RP11-71L14.3-IDO1/SMPD3, RP11-178F10.2-IDO1/HRH4, and hsa_circ_0008903-CYSLTR2, which may indicate potential regulatory effects of lncRNAs/circRNAs in CARAS. Dysregulated levels of immune cell infiltration may be closely related to CARAS. Conclusion: The regulating effect of lncRNA/circRNA-immunity/hypoxia-related mRNA regulatory pairs may be involved in the occurrence and development of CARAS.

3.
World J Clin Cases ; 9(26): 7693-7703, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34621820

RESUMEN

BACKGROUND: Chlamydia psittaci (C. psittaci) is a gram-negative intracellular parasitic pathogenic bacterium that can infect avian and mammalian hosts, including humans. The detection of C. psittaci infections typically relies on traditional antigen-based immunoassays or serological testing that often lack sensitivity and/or specificity. Metagenomic next generation sequencing (mNGS) is an emerging tool for diagnosis. AIM: To demonstrate that mNGS represents a valuable tool for rapid, sensitive, and accurate pathogen detection including C. psittaci infections. METHODS: Four cases of psittacosis pneumonia and one case of pediatric psittacosis meningitis were diagnosed between December 2019 and May 2020 using mNGS at Changzhou Second People's Hospital affiliated to Nanjing Medical University. Patients' clinical characteristics, manifestations, and treatment histories were retrospectively evaluated. RESULTS: All five patients had a history of exposure to wild (psittacine or other birds) or domesticated birds (chickens). All patients had a high fever (> 39℃) and three of them (60%) experienced organ insufficiency during the disease. The laboratory data showed normal to slightly increased leucocyte and neutrophil counts, and elevated procalcitonin levels in all five cases, and very high C-reactive protein levels in psittacosis pneumonia patients. mNGS identified a potential pathogen, C. psittaci, in patients' bronchoalveolar lavage fluid or cerebrospinal fluid. Computed tomography revealed lung air-space consolidation, pleural thickening, and effusion fluid buildup in psittacosis pneumonia cases, and an arachnoid cyst in the right temporal lobe of the pediatric psittacosis meningitis patient. All patients experienced complete recovery following the administration of targeted anti-chlamydia therapy. CONCLUSION: This study not only demonstrated that mNGS represents a valuable tool for rapid, sensitive, and accurate pathogen detection, but also raised public health concerns over C. psittaci infections.

4.
J Thorac Dis ; 12(5): 1960-1971, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32642099

RESUMEN

BACKGROUND: The diagnosis of severe asthma (SA) is difficult due to a necessary long-term treatment history currently, while there are few studies on biomarkers in the diagnosis of SA. Long non-coding RNA (lncRNA) growth arrest specific-5 (GAS5) has the potential of playing this role because its binding with glucocorticoid receptor (GR). The purpose of this article is to explore the possibility of lncRNA GAS5 acting as a biomarker for early diagnosis of severe asthma (SA). METHODS: Peripheral blood was obtained from healthy volunteers, patients with non-severe asthma (nSA) and SA, and peripheral blood mononuclear cells (PBMCs) were separated. Twenty-four female BALB/c mice (aged 6 weeks) were randomly and averagely divided into 3 groups, i.e., control group, asthma group and dexamethasone group. The mice were sensitized and challenged with ovalbumin (OVA) and lipopolysaccharide (LPS) to establish a murine model of steroid-insensitive asthma. Human bronchial epithelial cells (HBECs) were cultured, transfected with miR-9 mimics, JNK1 inhibitor and treated with interleukin (IL)-2 + IL-4 and dexamethasone. Western blot was used to detect glucocorticoid receptor phosphorylation at serine 226 (GRser226), and quantitative real-time PCR was used to detect GAS5 level. RESULTS: The level of GAS5 in PBMCs from nSA group elevated 20-fold higher after dexamethasone treatment in vitro, while it reduced 15-fold lower in SA group (P<0.001). The expression of GRser226 in PBMCs from SA group was significantly higher than that from control group and nSA group after dexamethasone treatment (P<0.001). In the lung tissue of mice, the GAS5 level of dexamethasone group was lower than that of asthma group (P<0.001) and control group (P<0.05). Both treatment with IL-2 + IL-4 and transfection of miR-9 mimics could increase the expression of GRser226 in HBECs (P<0.001). The GAS5 level in HBECs after IL-2 + IL-4 + Dexamethasone treatment was lower than that in HBECs only treated with IL-2 + IL-4 (P<0.001). Similarly, dexamethasone treatment also decreased the level of GAS5 in HBECs transfected with miR-9 mimics (P<0.05). Moreover, transfecting with JNK1 inhibitor could reverse the expression of GAS5 in HBECs transfected with miR-9 mimics and treated with dexamethasone. However, the level of GAS5 in HBECs interfered with IL-2 + IL-4 + Dexamethasone was not affected by JNK1 inhibitor. CONCLUSIONS: The expression of GAS5 is different in PBMCs between nSA and SA, and is affected by glucocorticoids treatment, which is due to GRser226 phosphorylation. GAS5 can be used as a potential biomarker for diagnosis of severe asthma by comparing GAS5 level in PBMCs from patients before and after glucocorticoids treatment in vitro.

5.
Epigenomics ; 11(2): 115-131, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30426778

RESUMEN

AIM: This study aimed to explore the molecular mechanism of severe asthma. MATERIALS & METHODS: The shared and divergent differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs) and lncRNAs (DElncRNAs) in asthma and severe asthma were identified by RNA-sequencing. Severe asthma-specific and shared DEmiRNA-DEmRNA-DElncRNA interaction networks were performed. RESULTS: Compared with normal control, 1328 DEmRNAs, 608 DElncRNAs and 63 DEmiRNAs were identified in severe asthma. Compared with asthma, 95 DEmRNAs, 143 DElncRNAs and 96 DEmiRNAs were identified in severe asthma. MiR-133a-3p-EFHD2/CNN2-AC144831.1 interactions and miR-3613-3p-CD44/BCL11B-LINC00158/CTA-217C2.1/AC010976.2/RP11-641A6.2 interactions were speculated to involve with the development of severe asthma. The results of GSE69683 validation were generally consistent with our RNA-sequencing results. CONCLUSION: This study provides clues for understanding the mechanism of severe asthma.


Asunto(s)
Asma/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Adulto , Asma/patología , Femenino , Humanos , Masculino , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Transcriptoma
6.
Oncotarget ; 7(47): 77468-77481, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27764812

RESUMEN

OBJECTIVE: To investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway. METHODS: NSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay. RESULTS: Compared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group. CONCLUSION: The miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Quinasa 1 de Adhesión Focal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Interferencia de ARN , Adulto , Anciano , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes Reporteros , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA