Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 24(59): 15903-15911, 2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30089194

RESUMEN

The supercritical carbon dioxide (scCO2 ) synthesis of non-reduced graphene oxide (GO) aerogels from dispersions of GO in ethanol is here reported as a low-cost, efficient, and environmentally friendly process. The preparation is carried out under the mild conditions of 333 K and 20 MPa. The high aspect ratio of the used GO sheets (ca. 30 µm lateral dimensions) allowed the preparation of aerogel monoliths by simultaneous scCO2 gelation and drying. Solid-state characterization results indicate that a thermally-stable mesoporous non-reduced GO aerogel was obtained by using the supercritical procedure, keeping most of the surface oxygenated groups on the GO sheets, thus, facilitating further functionalization. Moreover, the monoliths have a very low density, high specific surface area, and excellent mechanical integrity; characteristics which rival those of most light-weight reduced graphene aerogels reported in the literature.

2.
Phys Chem Chem Phys ; 19(25): 16413-16425, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28631791

RESUMEN

In a previous work by the authors (A. Fernández-Pérez el al., Room temperature sintering of polar ZnO nanosheets: I-evidence, 2017, DOI: 10.1039/C7CP02306E), polar ZnO nanosheets were stored at room temperature under different atmospheres and the evolution of their textural and crystal properties during storage was followed. It was found that the specific surface area of the nanosheets drastically decreased during storage, with a loss of up to 75%. The ZnO crystals increased in size mainly through the partial merging of their polar surfaces at the expense of narrow mesoporosity, in a process triggered by the action of moisture, oxygen and, in their absence, by light. In the present work, a set of spectroscopic techniques (FTIR, Raman and XPS) has been used in an attempt to unravel the mechanism behind this spontaneous sintering process. The mechanism starts with the molecular adsorption of water, which takes place on Zn atoms close to oxygen vacancies on the (100) surface, where H2O dissociates to form two hydroxyl groups and to heal one oxygen vacancy. This process triggers the room temperature migration of Zn interstitials towards the outer surface of the polar region. What were previously interstitial Zn atoms now gradually occupy the mesopores, with interstitial oxygen being used to build up the O sublattice until total occupancy of the narrow mesoporosity is achieved.

3.
Phys Chem Chem Phys ; 19(25): 16406-16412, 2017 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-28630962

RESUMEN

Polar ZnO nanosheets of a high specific surface area (∼120 m2 g-1) were subjected to storage under different atmospheres at room temperature and analyzed for changes in their textural and crystal properties. During their storage under laboratory conditions (in closed transparent polypropylene vials kept under the light of the laboratory on worktop tables) the nanosheets lost up to 75% of their specific surface area in approximately two months, with most of the loss occurring during the first two weeks. The narrow mesoporosity (∼5 nm pore size) became filled with ZnO during the process. No loss or gain in weight was detected. The loss of specific surface area took place under all of the atmospheres assayed, in the following order: moist air (with or without light) > moist CO2-free atmosphere (with or without light and/or oxygen) > dry CO2-free oxygen-containing atmosphere (with or without light) > dry inert atmosphere (with light) > dry inert atmosphere (in the dark). During storage the ZnO crystals grew mainly by the partial merging of their polar surfaces in a process triggered by the action of moisture, oxygen and, in the absence of these two agents, light. The mechanism of this intriguing phenomenon will be analyzed in detail in the second part of this work.

4.
ACS Omega ; 9(9): 10793-10798, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463318

RESUMEN

The classic random pore model (RPM) of Bhatia and Perlmutter [A random pore model for fluid-solid reactions: I. Isothermal, kinetic control. AIChE J.1980, 26, 379-386], which has been used in the kinetic analysis of numerous gas-solid processes involving porous materials under reaction control, was originally derived only for isothermal conditions. This has not prevented many researchers from using it in nonisothermal conditions, a frequent procedure whose validity has not been demonstrated until now. In this work, different questions are answered: Are the isothermal equations of the RPM valid under nonisothermal conditions? And, related to this question, is the commonly used conversion function correct? This work provides the scientific basis that was missing until now for the use of the RPM in nonisothermal conditions, as well as the correct conversion function for such use over the entire particle size range. The said RPM conversion function has been obtained from the exact formulation of the reaction rate equation, and as it should have been originally, it has the grain model function as one of its particular solutions. In this way, the gap that prevented the use of the random pore model for very low particle size values has finally been closed.

5.
Heliyon ; 9(11): e21260, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37885721

RESUMEN

This work provides a description of the aggregation equilibria of ibuprofen acid in deionized water at temperatures between 20 and 40 °C in the 0.1-20.1 ppm concentration range. For this goal, we have made use of UV-Visible spectroscopy. A calculation algorithm was developed to obtain the aggregate orders and thermodynamic parameters from the experimental absorbance values. Monomeric ibuprofen acid was found to be absent in water solutions. In addition to the dimer, two aggregates formed by 32 and 128 monomeric units were found to co-exist in solution at the highest concentration tested. A critical micelle concentration of 7.8 ppm was estimated for this system. The appearance of the first aggregate occurs when the pH drops below the pKa value, which was determined to be 4.62. At higher ibuprofen concentrations, a sudden jump in the electrical conductivity coincides with the onset of formation of the second aggregate. A varied menu of alternatives is offered with respect to the calibration curve of ibuprofen in water, though the linear calibration of ibuprofen concentration with absorbance might be reasonably performed at 224 nm. Finally, the dissolution rate of the commercial ibuprofen used in this work was found to obey the Noyes-Whitney first order equation.

6.
ACS Omega ; 5(46): 29801-29815, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33251415

RESUMEN

As in our previous work, most attempts to study the self-aggregation of methylene blue (MB) in water have been limited to the dimer. In the present work, we have analyzed the self-aggregation of MB in water beyond the dimeric form. For this purpose, the visible light absorption spectra of a large number of aqueous solutions of MB (1.1 × 10-6 to 3.4 × 10-3 M) and NaCl (0.0-0.15 M) at different temperatures (282-333 K) have been fed to a mathematical routine in order to determine the potential existence of a unique higher-order aggregate without any preconception about the aggregation order or about the need of counterions, such as chloride, for compensating the positive charge of the aggregates. Contrary to the common belief that the trimer is the dominant aggregate at high MB concentration, to our surprise we found that the tetramer acting alone, and without any counterion, is the higher-order aggregate that yields the best fitting to all the experimental absorbance spectra, with a very low average relative error of 0.04 ± 0.34%. Also contrary to previous assumptions, it has emerged quite evidently that this aggregate is present in the solution at MB concentrations below 3.4 × 10-5 M (11 ppm), though to a rather low extent. This has brought the need for the recalculation of the visible light absorption spectrum and the thermodynamic parameters for the dimer, which along with those for the tetramer are the main contributions of the present work.

7.
RSC Adv ; 10(73): 45090-45104, 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-35516268

RESUMEN

The synthesis of 1D cobalt and zinc monometallic and heterometallic coordination polymers (CPs) was carried out applying one-pot synthetic methods by using either supercritical carbon dioxide or ethanol as the solvent. A collection of four 1D CPs were thus obtained by the combination of a metal (or a mixture of metals) with the linker 1,4-bis(4-pyridylmethyl)benzene. The used metallic complexes were zinc and cobalt hexafluoroacetylacetonate, which can easily incorporate pyridine ligands in the coordination sphere of the metal centre. Independently of the used solvent, the precipitated phases involving Zn(ii), i.e., homometallic CP of Zn(ii) and bimetallic CP of Zn(ii)/Co(ii), were isostructural. Contrarily, homometallic CPs of Co(ii) were precipitated as an isostructural phase of Zn(ii) or with a different structure, depending on the used solvent. All the structures were resolved by XRD using synchrotron radiation. In addition, the magnetic properties of the new CPs involving Co(ii) were studied. Remarkably, at low temperatures with the application of an external field, they acted as field-induced single molecule magnets.

8.
J Colloid Interface Sci ; 511: 27-38, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28964940

RESUMEN

The adsorption of cytochrome c in water onto organic and carbon xerogels with narrow pore size distributions has been studied by carrying out transient and equilibrium batch adsorption experiments. It was found that equilibrium adsorption exhibits a quasi-Langmuirian behavior (a g coefficient in the Redlich-Peterson isotherms of over 0.95) involving the formation of a monolayer of cyt c with a depth of ∼4nm on the surface of all xerogels for a packing density of the protein inside the pores of 0.29gcm-3. A load-dependent surface diffusion model (LDSDM) has been developed and numerically solved to fit the experimental kinetic adsorption curves. The results of the LDSDM show better fittings than the standard homogeneous surface diffusion model. The value of the external mass transfer coefficient obtained by numerical optimization confirms that the process is controlled by the intraparticle surface diffusion of cyt c. The surface diffusion coefficients decrease with increasing protein load down to zero for the maximum possible load. The decrease is steeper in the case of the xerogels with the smallest average pore diameter (∼15nm), the limit at which the zero-load diffusion coefficient of cyt c also begins to be negatively affected by interactions with the opposite wall of the pore.


Asunto(s)
Citocromos c/química , Modelos Químicos , Adsorción , Animales , Bovinos , Geles , Cinética , Porosidad
9.
J Colloid Interface Sci ; 467: 170-179, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26802276

RESUMEN

A multilayer adsorption reaction model in liquid phase based on BET isotherm fundamentals has been developed from the pseudo steady-state hypothesis of adsorption on the accumulating adsorbate layers. The model accurately reproduces the adsorption isotherms and kinetic profiles of different adsorption systems reported in the literature, and especially those of mesoporous carbon materials used to adsorb organic compounds in aqueous solutions. The kinetic rate constant evaluated for each of the adsorption systems permitted them to be sorted according to the adsorption rate, regardless of the operation parameters employed in the experiments. The model also allowed the effect of the equilibrium parameters and operation variables on the adsorption rate to be analyzed. The analysis yielded similar trends to those reported in literature.

10.
J Hazard Mater ; 246-247: 126-34, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23291337

RESUMEN

The aim of this study was to assess the activity of catalysts formed by nanostructured zinc oxide supported on stainless steel wire mesh for the photocatalytic degradation of methylene blue under UV irradiation. Catalysts prepared by means of different low temperature synthesis methods, as described in a previous work (Vu et al., Mater. Res. Bull. 47 (2012) 1577-1586) were tested. A new activity parameter was introduced in order to compare the catalytic activity of the different catalysts. The best catalyst showed a catalytic activity higher than that of the reference material TiO(2) P25 (Degussa-Evonik). This high activity is attributed to a higher quantum yield derived from the small particle length of the ZnO deposited on the wire mesh. The photocatalytic degradation kinetics of methylene blue fitted a potential model with n orders ranging from 0.5 to 6.9. Reaction orders over 1 were attributed to catalyst deactivation during the reaction resulting from the photocorrosion of ZnO.


Asunto(s)
Azul de Metileno/efectos de la radiación , Fotólisis , Contaminantes Químicos del Agua/efectos de la radiación , Óxido de Zinc/química , Azul de Metileno/química , Nanopartículas/química , Acero Inoxidable , Rayos Ultravioleta , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA