Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Faraday Discuss ; 246(0): 225-250, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37565454

RESUMEN

Observing finite regions of a bigger system is a common aim, from microscopy to molecular simulations. In the latter especially, there is ongoing interest in predicting thermodynamic properties from tracking fluctuations in finite observation volumes. However, kinetic properties have received little attention, especially not in ionic solutions, where electrostatic interactions play a decisive role. Here, we probe ionic fluctuations in finite volumes with Brownian dynamics and build an analytical framework that reproduces our simulation results and is broadly applicable to other systems with pairwise interactions. Particle number and charge correlations exhibit a rich phenomenology with time, characterized by a diversity of timescales. The noise spectrum of both quantities decays as 1/f3/2, where f is the frequency. This signature of fractional noise shows the universality of 1/f3/2 scalings when observing diffusing particles in finite domains. The hyperuniform behaviour of charge fluctuations, namely that correlations scale with the area of the observation volume, is preserved in time. Correlations even become proportional to the box perimeter at sufficiently long times. Our results pave the way to understand fluctuations in more complex systems, from nanopores to single-particle electrochemistry.

2.
J Chem Phys ; 158(21)2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37265213

RESUMEN

Transient bonds between fast linkers and slower particles are widespread in physical and biological systems. Despite their diverse structure and function, a commonality is that the linkers diffuse on timescales much faster compared to the overall motion of the particles they bind to. This limits numerical and theoretical approaches that need to resolve these diverse timescales with high accuracy. Many models, therefore, resort to effective, yet ad hoc, dynamics, where linker motion is only accounted for when bound. This paper provides a mathematical justification for such coarse-grained dynamics that preserves detailed balance at equilibrium. Our derivation is based on multiscale averaging techniques and is broadly applicable. We verify our results with simulations on a minimal model of fast linker binding to a slow particle. We show how our framework can be applied to various systems, including those with multiple linkers, stiffening linkers upon binding, or slip bonds with force-dependent unbinding. Importantly, the preservation of detailed balance only sets the ratio of the binding to the unbinding rates, but it does not constrain the detailed expression of binding kinetics. We conclude by discussing how various choices of binding kinetics may affect macroscopic dynamics.

3.
Phys Rev Lett ; 129(4): 048003, 2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35939031

RESUMEN

Inertia does not generally affect the long-time diffusion of passive overdamped particles in fluids. Yet a model starting from the Langevin equation predicts a surprising property of particles coated with ligands that bind reversibly to surface receptors: heavy particles diffuse more slowly than light ones of the same size. We show this by simulation and by deriving an analytic formula for the mass-dependent diffusion coefficient in the overdamped limit. We estimate the magnitude of this effect for a range of biophysical ligand-receptor systems, and find it is potentially observable for tailored micronscale DNA-coated colloids.


Asunto(s)
Coloides , Biofisica , Simulación por Computador , Difusión , Ligandos
4.
Soft Matter ; 18(20): 4030, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35532151

RESUMEN

Correction for 'The nanocaterpillar's random walk: diffusion with ligand-receptor contacts' by Sophie Marbach et al., Soft Matter, 2022, 18, 3130-3146, DOI: https://doi.org/10.1039/D1SM01544C.

5.
Soft Matter ; 18(16): 3130-3146, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35348560

RESUMEN

Particles with ligand-receptor contacts bind and unbind fluctuating "legs" to surfaces, whose fluctuations cause the particle to diffuse. Quantifying the diffusion of such "nanoscale caterpillars" is a challenge, since binding events often occur on very short time and length scales. Here we derive an analytical formula, validated by simulations, for the long time translational diffusion coefficient of an overdamped nanocaterpillar, under a range of modeling assumptions. We demonstrate that the effective diffusion coefficient, which depends on the microscopic parameters governing the legs, can be orders of magnitude smaller than the background diffusion coefficient. Furthermore it varies rapidly with temperature, and reproduces the striking variations seen in existing data and our own measurements of the diffusion of DNA-coated colloids. Our model gives insight into the mechanism of motion, and allows us to ask: when does a nanocaterpillar prefer to move by sliding, where one leg is always linked to the surface, and when does it prefer to move by hopping, which requires all legs to unbind simultaneously? We compare a range of systems (viruses, molecular motors, white blood cells, protein cargos in the nuclear pore complex, bacteria such as Escherichia coli, and DNA-coated colloids) and present guidelines to control the mode of motion for materials design.


Asunto(s)
Coloides , ADN , Coloides/química , ADN/química , Difusión , Ligandos , Movimiento (Física)
6.
Nature ; 537(7619): 210-3, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27604947

RESUMEN

Measurements and simulations have found that water moves through carbon nanotubes at exceptionally high rates owing to nearly frictionless interfaces. These observations have stimulated interest in nanotube-based membranes for applications including desalination, nano-filtration and energy harvesting, yet the exact mechanisms of water transport inside the nanotubes and at the water-carbon interface continue to be debated because existing theories do not provide a satisfactory explanation for the limited number of experimental results available so far. This lack of experimental results arises because, even though controlled and systematic studies have explored transport through individual nanotubes, none has met the considerable technical challenge of unambiguously measuring the permeability of a single nanotube. Here we show that the pressure-driven flow rate through individual nanotubes can be determined with unprecedented sensitivity and without dyes from the hydrodynamics of water jets as they emerge from single nanotubes into a surrounding fluid. Our measurements reveal unexpectedly large and radius-dependent surface slippage in carbon nanotubes, and no slippage in boron nitride nanotubes that are crystallographically similar to carbon nanotubes, but electronically different. This pronounced contrast between the two systems must originate from subtle differences in the atomic-scale details of their solid-liquid interfaces, illustrating that nanofluidics is the frontier at which the continuum picture of fluid mechanics meets the atomic nature of matter.

7.
J Chem Phys ; 152(5): 054704, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32035444

RESUMEN

To overcome the traditional paradigm of filtration, where separation is essentially performed upon steric sieving principles, we explore the concept of dynamic osmosis through active membranes. A partially permeable membrane presents a time-tuneable feature that changes the effective pore interaction with the solute and thus actively changes permeability with time. In general, we find that slow flickering frequencies effectively decrease the osmotic pressure and large flickering frequencies do not change it. In the presence of an asymmetric membrane, we find a resonant frequency where pumping of the solute is performed and can be analyzed in terms of ratchet transport. We discuss and highlight the properties of this resonant osmotic transport. Furthermore, we show that dynamic osmosis allows us to pump the solute at the nanoscale using less energy than reverse osmosis. This opens new possibilities to build advanced filtration devices and design artificial ionic machinery.

8.
Chem Soc Rev ; 48(11): 3102-3144, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31114820

RESUMEN

Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.

13.
J Chem Phys ; 147(15): 154701, 2017 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-29055345

RESUMEN

Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating-in terms of size or charge-is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.

14.
J Chem Phys ; 146(19): 194702, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527431

RESUMEN

In this paper, we explore osmotic transport by means of molecular dynamics (MD) simulations. We first consider osmosis through a membrane and investigate the reflection coefficient of an imperfectly semi-permeable membrane, in the dilute and high concentration regimes. We then explore the diffusio-osmotic flow of a solute-solvent fluid adjacent to a solid surface, driven by a chemical potential gradient parallel to the surface. We propose a novel non-equilibrium MD (NEMD) methodology to simulate diffusio-osmosis, by imposing an external force on every particle, which properly mimics the chemical potential gradient on the solute in spite of the periodic boundary conditions. This NEMD method is validated theoretically on the basis of linear-response theory by matching the mobility with their Green-Kubo expressions. Finally, we apply the framework to more realistic systems, namely, a water-ethanol mixture in contact with a silica or a graphene surface.

15.
J Chem Phys ; 146(19): 194701, 2017 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-28527459

RESUMEN

In this paper, we explore various forms of osmotic transport in the regime of high solute concentration. We consider both the osmosis across membranes and diffusio-osmosis at solid interfaces, driven by solute concentration gradients. We follow a mechanical point of view of osmotic transport, which allows us to gain much insight into the local mechanical balance underlying osmosis. We demonstrate in particular how the general expression of the osmotic pressure for mixtures, as obtained classically from the thermodynamic framework, emerges from the mechanical balance controlling non-equilibrium transport under solute gradients. Expressions for the rejection coefficient of osmosis and the diffusio-osmotic mobilities are accordingly obtained. These results generalize existing ones in the dilute solute regime to mixtures with arbitrary concentrations.

16.
Phys Rev Lett ; 117(17): 178103, 2016 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-27824465

RESUMEN

How do the topology and geometry of a tubular network affect the spread of particles within fluid flows? We investigate patterns of effective dispersion in the hierarchical, biological transport network formed by Physarum polycephalum. We demonstrate that a change in topology-pruning in the foraging state-causes a large increase in effective dispersion throughout the network. By comparison, changes in the hierarchy of tube radii result in smaller and more localized differences. Pruned networks capitalize on Taylor dispersion to increase the dispersion capability.


Asunto(s)
Transporte Biológico , Physarum polycephalum , Modelos Biológicos
17.
Eur Phys J E Soft Matter ; 38(11): 122, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26590152

RESUMEN

We use the theory of active gels to study theoretically the merging and separation of two actin dense layers akin to cortical layers of animal cells. The layers bind at a distance equal to twice the thickness of a free layer, thus forming a single dense layer, similar in this sense to a lamellipodium. When that unique layer is stretched apart, it is resilient to break apart up to a critical length larger than twice the thickness of a free layer. We show that this behavior can result from the high contractile properties of the actomyosin gel due to the activity of myosin molecular motors. Furthermore, we establish that the stability of the stretched single layer is highly dependent on the properties of the gel. Indeed, the nematic order of the actin filaments along the polymerizing membranes is a destabilizing factor.


Asunto(s)
Citoesqueleto de Actina/química , Actinas/química , Actomiosina/química , Modelos Teóricos , Animales , Geles/química , Miosinas/química , Polimerizacion
18.
Elife ; 122023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916885

RESUMEN

Veins in vascular networks, such as in blood vasculature or leaf networks, continuously reorganize, grow or shrink, to minimize energy dissipation. Flow shear stress on vein walls has been set forth as the local driver for a vein's continuous adaptation. Yet, shear feedback alone cannot account for the observed diversity of vein dynamics - a puzzle made harder by scarce spatiotemporal data. Here, we resolve network-wide vein dynamics and shear rate during spontaneous reorganization in the prototypical vascular networks of Physarum polycephalum. Our experiments reveal a plethora of vein dynamics (stable, growing, shrinking) where the role of shear is ambiguous. Quantitative analysis of our data reveals that (a) shear rate indeed feeds back on vein radius, yet, with a time delay of 1-3 min. Further, we reconcile the experimentally observed disparate vein fates by developing a model for vein adaptation within a network and accounting for the observed time delay. The model reveals that (b) vein fate is determined by parameters - local pressure or relative vein resistance - which integrate the entire network's architecture, as they result from global conservation of fluid volume. Finally, we observe avalanches of network reorganization events that cause entire clusters of veins to vanish. Such avalanches are consistent with network architecture integrating parameters governing vein fate as vein connections continuously change. As the network architecture integrating parameters intrinsically arise from laminar fluid flow in veins, we expect our findings to play a role across flow-based vascular networks.


Asunto(s)
Physarum polycephalum , Venas
19.
Nat Commun ; 13(1): 2304, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35484104

RESUMEN

The self-assembly of DNA-coated colloids into highly-ordered structures offers great promise for advanced optical materials. However, control of disorder, defects, melting, and crystal growth is hindered by the lack of a microscopic understanding of DNA-mediated colloidal interactions. Here we use total internal reflection microscopy to measure in situ the interaction potential between DNA-coated colloids with nanometer resolution and the macroscopic melting behavior. The range and strength of the interaction are measured and linked to key material design parameters, including DNA sequence, polymer length, grafting density, and complementary fraction. We present a first-principles model that screens and combines existing theories into one coherent framework and quantitatively reproduces our experimental data without fitting parameters over a wide range of DNA ligand designs. Our theory identifies a subtle competition between DNA binding and steric repulsion and accurately predicts adhesion and melting at a molecular level. Combining experimental and theoretical results, our work provides a quantitative and predictive approach for guiding material design with DNA-nanotechnology and can be further extended to a diversity of colloidal and biological systems.


Asunto(s)
Coloides , ADN , Secuencia de Bases , Coloides/química , Cristalización , ADN/química , Nanotecnología
20.
Nat Nanotechnol ; 14(6): 573-578, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30962547

RESUMEN

Recent advances in nanofluidics have allowed the exploration of ion transport down to molecular-scale confinement, yet artificial porins are still far from reaching the advanced functionalities of biological ion machinery. Achieving single ion transport that is tunable by an external gate-the ionic analogue of electronic Coulomb blockade-would open new avenues in this quest. However, an understanding of ionic Coulomb blockade beyond the electronic analogy is still lacking. Here, we show that the many-body dynamics of ions in a charged nanochannel result in quantized and strongly nonlinear ionic transport, in full agreement with molecular simulations. We find that ionic Coulomb blockade occurs when, upon sufficient confinement, oppositely charged ions form 'Bjerrum pairs', and the conduction proceeds through a mechanism reminiscent of Onsager's Wien effect. Our findings open the way to novel nanofluidic functionalities, such as an ion pump based on ionic Coulomb blockade, inspired by its electronic counterpart.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA