Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
PLoS Biol ; 21(12): e3002249, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38127878

RESUMEN

Despite use of tecovirimat since the beginning of the 2022 outbreak, few data have been published on its antiviral effect in humans. We here predict tecovirimat efficacy using a unique set of data in nonhuman primates (NHPs) and humans. We analyzed tecovirimat antiviral activity on viral kinetics in NHP to characterize its concentration-effect relationship in vivo. Next, we used a pharmacological model developed in healthy volunteers to project its antiviral efficacy in humans. Finally, a viral dynamic model was applied to characterize mpox kinetics in skin lesions from 54 untreated patients, and we used this modeling framework to predict the impact of tecovirimat on viral clearance in skin lesions. At human-recommended doses, tecovirimat could inhibit viral replication from infected cells by more than 90% after 3 to 5 days of drug administration and achieved over 97% efficacy at drug steady state. With an estimated mpox within-host basic reproduction number, R0, equal to 5.6, tecovirimat could therefore shorten the time to viral clearance if given before viral peak. We predicted that initiating treatment at symptom onset, which on average occurred 2 days before viral peak, could reduce the time to viral clearance by about 6 days. Immediate postexposure prophylaxis could not only reduce time to clearance but also lower peak viral load by more than 1.0 log10 copies/mL and shorten the duration of positive viral culture by about 7 to 10 days. These findings support the early administration of tecovirimat against mpox infection, ideally starting from the infection day as a postexposure prophylaxis.


Asunto(s)
Antivirales , Mpox , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Benzamidas , Isoindoles/efectos adversos
2.
PLoS Comput Biol ; 19(8): e1010721, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37556476

RESUMEN

The impact of variants of concern (VoC) on SARS-CoV-2 viral dynamics remains poorly understood and essentially relies on observational studies subject to various sorts of biases. In contrast, experimental models of infection constitute a powerful model to perform controlled comparisons of the viral dynamics observed with VoC and better quantify how VoC escape from the immune response. Here we used molecular and infectious viral load of 78 cynomolgus macaques to characterize in detail the effects of VoC on viral dynamics. We first developed a mathematical model that recapitulate the observed dynamics, and we found that the best model describing the data assumed a rapid antigen-dependent stimulation of the immune response leading to a rapid reduction of viral infectivity. When compared with the historical variant, all VoC except beta were associated with an escape from this immune response, and this effect was particularly sensitive for delta and omicron variant (p<10-6 for both). Interestingly, delta variant was associated with a 1.8-fold increased viral production rate (p = 0.046), while conversely omicron variant was associated with a 14-fold reduction in viral production rate (p<10-6). During a natural infection, our models predict that delta variant is associated with a higher peak viral RNA than omicron variant (7.6 log10 copies/mL 95% CI 6.8-8 for delta; 5.6 log10 copies/mL 95% CI 4.8-6.3 for omicron) while having similar peak infectious titers (3.7 log10 PFU/mL 95% CI 2.4-4.6 for delta; 2.8 log10 PFU/mL 95% CI 1.9-3.8 for omicron). These results provide a detailed picture of the effects of VoC on total and infectious viral load and may help understand some differences observed in the patterns of viral transmission of these viruses.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2/genética , Movimiento Celular , Macaca fascicularis , Primates
3.
Lancet Microbe ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38857615

RESUMEN

BACKGROUND: Since the emergence of the global mpox outbreak in May, 2022, more than 90 000 cases have been diagnosed across 110 countries, disproportionately affecting people with HIV. The durability of mpox-specific immunity is unclear and reinfections have been reported. We aimed to compare mpox immune responses up to 6 months after diagnosis in participants with and without HIV and assess their effect on disease severity and viral clearance dynamics. METHODS: This study was embedded within a prospective, observational, multicentre cohort study of viral clearance dynamics among people with mpox in Spain (MoViE). We included women and men aged 18 years or older, who had signs of mpox, and reported having symptom onset within the previous 10 days at the moment of mpox diagnosis from three sex clinics of the Barcelona metropolitan area. Samples from skin ulcers were collected weekly to estimate the time to clear monkeypox virus (MPXV) from skin lesions. Blood samples were taken at diagnosis, 29, 91, and 182 days later for immune analysis. This included quantifying IgG and IgA against three mpox antigens by ELISA, evaluating in-vitro neutralisation, and characterising mpox-specific T-cell responses using interferon γ detecting enzyme-linked immunospot (ELISpot) assay and multiparametric flow cytometry. FINDINGS: Of the 77 originally enrolled participants, we included 33 participants recruited between July 19, and Oct 6, 2022. Participants without HIV (19 [58%] participants) and participants with HIV (14 [42%] participants) had similar clinical severity and time to MPXV clearance in skin lesions. Participants with HIV had a CD4+ T-cell count median of 777 cells per µL (IQR 484-1533), and 11 (78%) of 14 were virally suppressed on antiretroviral therapy. Nine (27%) of 33 participants were age 49 years or older. 15 (45%) of 33 participants were originally from Spain, and all participants were men. Early humoral responses, particularly concentrations and breadth of IgG and IgA, were associated with milder disease and faster viral clearance. Orthopoxvirus-specific T cells count was also positively correlated with MPXV clearance. Antibody titres declined more rapidly in participants with HIV, but T-cell responses against MPXV were sustained up to day 182 after diagnosis, regardless of HIV status. INTERPRETATION: Higher breadth and magnitude of B-cell and T-cell responses are important in facilitating local viral clearance, limiting mpox dissemination, and reducing disease severity in individuals with preserved immune system. Antibodies appear to contribute to early viral control and T-cell responses are sustained over time, which might contribute to milder presentations during reinfection. FUNDING: Fundació Lluita contra les Infeccions, IrsiCaixa, and Consorcio Centro de Investigación Biomédica en Red, Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación e Universidades.

4.
Lancet Infect Dis ; 23(4): 445-453, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36521505

RESUMEN

BACKGROUND: Monkeypox DNA has been detected in skin lesions, saliva, oropharynx, urine, semen, and stool of patients infected during the 2022 clade IIb outbreak; however, the viral dynamics within these compartments remain unknown. We aimed to characterise the viral load kinetics over time in various parts of the body. METHODS: This was an observational, prospective, multicentre study of outpatients diagnosed with monkeypox in two hospitals and two sexual health clinics in Spain between June 28, 2022, and Sept 22, 2022. Men and women aged over 18 years were eligible if they reported having symptom onset within the previous 10 days of presentation, and were ineligible if disease was severe enough to be admitted to hospital. Samples were collected from five body locations (skin lesions, oropharynx, rectum, semen or vagina, and a dried blood spot) at six time points up to 57 days after the screening visit. Samples were analysed by quantitative PCR and a subset by cell culture. The primary endpoint was time from symptom onset to viral DNA clearance. FINDINGS: Overall, 1663 samples were collected from 77 study participants. 75 (97%) participants were men, the median age was 35·0 years (IQR 29·0-46·0), and 39 (51%) participants were living with HIV. The median time from symptom onset to viral clearance was 25 days (95% CI 23-28) in the skin lesions, 16 days (13-19) in the oropharynx, 16 days (13-23) in the rectum, 13 days in semen (9-18), and 1 day in blood (0-5). The time from symptom onset to viral clearance for 90% of cases was 41 days (95% CI 34-47) in skin lesions and 39 days (27-56) in semen. The median viral load in skin lesions was 7·3 log10 copies per mL (IQR 6·5-8·2) at baseline, compared with 4·6 log10 copies per mL (2·9-5·8) in oropharyngeal samples, 5·0 log10 copies per mL (2·9-7·5) in rectal samples, 3·5 log10 copies per mL (2·9-4·7) in semen samples, and 4·0 log10 copies per mL (4·0-4·0) in blood specimens. Replication-competent viruses were isolated in samples with high DNA levels (>6·5 log10 copies per mL). INTERPRETATION: In immunocompetent patients with mild monkeypox disease, PCR data alone would suggest a contact isolation period of 3 to 6 weeks but, based on detection of replication-competent virus, this time could be reduced. Based on findings from this cohort of patients, semen testing and prolonged use of condoms after recovery from monkeypox might not be necessary. FUNDING: University Hospital Germans Trias i Pujol and the YoMeCorono. TRANSLATION: For the Spanish translation of the abstract see Supplementary Materials section.


Asunto(s)
Mpox , Masculino , Humanos , Femenino , Adulto , Persona de Mediana Edad , Estudios Prospectivos , España/epidemiología , Semen , Saliva , Carga Viral
5.
Elife ; 102021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34569939

RESUMEN

The relationship between SARS-CoV-2 viral load and infectiousness is poorly known. Using data from a cohort of cases and high-risk contacts, we reconstructed viral load at the time of contact and inferred the probability of infection. The effect of viral load was larger in household contacts than in non-household contacts, with a transmission probability as large as 48% when the viral load was greater than 1010 copies per mL. The transmission probability peaked at symptom onset, with a mean probability of transmission of 29%, with large individual variations. The model also projects the effects of variants on disease transmission. Based on the current knowledge that viral load is increased by two- to eightfold with variants of concern and assuming no changes in the pattern of contacts across variants, the model predicts that larger viral load levels could lead to a relative increase in the probability of transmission of 24% to 58% in household contacts, and of 15% to 39% in non-household contacts.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/transmisión , SARS-CoV-2/patogenicidad , Carga Viral , Adulto , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Estudios de Cohortes , Trazado de Contacto/estadística & datos numéricos , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Factores de Riesgo , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Replicación Viral/inmunología , Adulto Joven
6.
Nat Commun ; 12(1): 6097, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671037

RESUMEN

Effective treatments against Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) are urgently needed. Monoclonal antibodies have shown promising results in patients. Here, we evaluate the in vivo prophylactic and therapeutic effect of COVA1-18, a neutralizing antibody highly potent against the B.1.1.7 isolate. In both prophylactic and therapeutic settings, SARS-CoV-2 remains undetectable in the lungs of treated hACE2 mice. Therapeutic treatment also causes a reduction in viral loads in the lungs of Syrian hamsters. When administered at 10 mg kg-1 one day prior to a high dose SARS-CoV-2 challenge in cynomolgus macaques, COVA1-18 shows very strong antiviral activity in the upper respiratory compartments. Using a mathematical model, we estimate that COVA1-18 reduces viral infectivity by more than 95% in these compartments, preventing lymphopenia and extensive lung lesions. Our findings demonstrate that COVA1-18 has a strong antiviral activity in three preclinical models and could be a valuable candidate for further clinical evaluation.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Antivirales/administración & dosificación , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Animales , Anticuerpos Monoclonales/farmacocinética , Antivirales/farmacocinética , COVID-19/sangre , COVID-19/inmunología , COVID-19/virología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Pulmón/metabolismo , Pulmón/virología , Macaca fascicularis , Masculino , Mesocricetus , Ratones , Ratones Transgénicos , SARS-CoV-2/aislamiento & purificación , Distribución Tisular , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA