RESUMEN
PURPOSE: Intraoperative fluoroscopy has been proposed as a feasible method to improve the accuracy of anatomical tunnel positioning. However, it has so far not been determined, whether this technique reduces the variability of tunnel positioning in a clinical set-up. Therefore, the purpose of this study was to determine the variability of tunnel positions applying intraoperative fluoroscopy. METHODS: Femoral and tibial tunnel positions of 112 fluoroscopic ACL reconstruction cases were determined according to validated radiological measurement methods. Mean positions, standard deviations and ranges were calculated to determine the variability of the tunnel positions. Subgroup variability analysis was performed to analyse cases in which tunnel positions were corrected. RESULTS: Applying intraoperative fluoroscopy, the variability of tunnel positions was found to be 3 % at the femur (range 15.4 %) and 2.3 % at the tibia (9.7 %). In 34 cases (30.0 %), non-satisfactory tunnel positions were identified and could be corrected achieving more accurate positions regarding to radiological parameters (14× femur, 16× tibia, 4× femur and tibia). CONCLUSIONS: The results of the presented study indicate that intraoperative fluoroscopy allows to identify non-accurate tunnel positions regarding to radiological criteria. The determined low variability indicates that fluoroscopic-based ACL reconstruction can be recommended as a feasible, easy and effective adjunct that enables surgeons to create more consistent and reliable tunnel positions in ACL reconstruction. LEVEL OF EVIDENCE: IV.