Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(51): 25634-25640, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801874

RESUMEN

How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas , Catálisis , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Enzimas/química , Enzimas/metabolismo , Enzimas/ultraestructura , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/ultraestructura , Modelos Moleculares , Conformación Proteica
2.
Biopolymers ; 112(6): e23427, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33792032

RESUMEN

Hemoglobin III (HbIII) is one of the two oxygen reactive hemoproteins present in the bivalve, Lucina pectinata. The clam inhabits a sulfur-rich environment and HbIII is the only hemoprotein present in the system which does not yet have a structure described elsewhere. It is known that HbIII exists as a heterodimer with hemoglobin II (HbII) to generate the stable Oxy(HbII-HbIII) complex but it remains unknown if HbIII can form a homodimeric species. Here, a new chromatographic methodology to separate OxyHbIII from the HbII-HbIII dimer has been developed, employing a fast performance liquid chromatography and ionic exchange chromatography column. The nature of OxyHbIII in solution at concentrations from 1.6 mg/mL to 20.4 mg/mL was studied using small angle X-ray scattering (SAXS). The results show that at all concentrations, the Oxy(HbIII-HbIII) dimer dominates in solution. However, as the concentration increases to nonphysiological values, 20.4 mg/mL, HbIII forms a 30% tetrameric fraction. Thus, there is a direct relationship between the Oxy(HbIII-HbIII) oligomeric form and hemoglobin concentration. We suggest it is likely that the OxyHbIII dimer contributes to active oxygen transport in tissues of L pectinata, where the Oxy(HbII-HbIII) complex is not present.


Asunto(s)
Bivalvos/metabolismo , Oxihemoglobinas/química , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Secuencia de Aminoácidos , Animales , Bivalvos/genética , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Hemo/química , Hemo/metabolismo , Sulfuro de Hidrógeno/metabolismo , Oxihemoglobinas/genética , Oxihemoglobinas/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem/métodos
3.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38536910

RESUMEN

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas , Cristalografía por Rayos X , Proteínas/química , Catálisis , Conformación Proteica , Hidrolasas
4.
bioRxiv ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37645800

RESUMEN

Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.

5.
J Inorg Biochem ; 224: 111578, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34481348

RESUMEN

The studies on the L. pectinata hemoglobins (HbI, HbII, and HbIII) are essential because of their biological roles in hydrogen sulfide transport and metabolism. Variation in the pH could also play a role in the transport of hydrogen sulfide by HbI and oxygen by HbII and HbIII, respectively. Here, fluoride binding was used to further understand the structural properties essential for the molecular mechanism of ligand stabilization as a function of pH. The data allowed us to gain insights into how the physiological roles of HbI, HbII, HbIII, adult hemoglobin (A-Hb), and horse heart myoglobin (Mb) have an impact on the heme-bound fluoride stabilization. In addition, analysis of the vibrational assignments of the met-cyano heme complexes shows varied strength interactions of the heme-bound ligand. The heme pocket composition properties differ between HbI (GlnE7 and PheB10) and HbII/HbIII (GlnE7 and TyrB10). Also, the structural GlnE7 stereo orientation changes between HbI and HbII/HbIII. In HbI, its carbonyl group orients towards the heme iron, while in HbII/HbIII, the amino group occupies this position. Therefore, in HbI, the interactions to the heme-bound fluoride ion, cyanide, and oxygen with GlnE7 via H-bonding are not probable. Still, the aromatic cage PheB10, PheCD1, and PheE11 may contribute to the observed stabilization. However, a robust H-bonding networking stabilizes HbII and HbIII, heme-bound fluoride, cyanide, and oxygen ligand with the OH and NH2 groups of TyrB10 and GlnE7, respectively. At the same time, A-Hb and Mb have moderate but similar ligand interactions controlled by their respective distal E7 histidine.


Asunto(s)
Bivalvos/metabolismo , Fluoruros/metabolismo , Hemo/metabolismo , Hemoglobinas/metabolismo , Animales , Cianuros/metabolismo , Fluoruros/química , Hemo/química , Hemoglobinas/química , Caballos , Enlace de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Ligandos , Mioglobina/metabolismo , Oxígeno/metabolismo , Tirosina/metabolismo
6.
J Inorg Biochem ; 207: 111055, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32217352

RESUMEN

Lucina pectinata live in high concentrations of hydrogen sulfide (H2S) and contains one hemoglobin, Hemoglobin I (HbI), transporting H2S and two hemoglobins, Hemoglobin II (HbII) and Hemoglobin (HbIII), transferring dioxygen to symbionts. HbII and HbIII contain B10 tyrosine (Tyr) and E7 glutamine (Gln) in the heme pocket generating an efficient hydrogen bonding network with the (HbII-HbIII)-O2 species, leading to very low ligand dissociation rates. The results indicate that the oxy-hemeprotein is susceptible to pH from 4 to 9, at acidic conditions, and as a function of the potassium ferricyanide concentration, 100% of the met-aquo derivative is produced. Without a strong oxidant, pH 5 generates a small concentration of the met-aquo complex. The process is accelerated by the presence of salts, as indicated by the crystallization structures and UV-Vis spectra. The results suggest that acidic pH generates conformational changes associated with B10 and E7 heme pocket amino acids, weakening the (HbII-HbIII)-O2 hydrogen bond network. The observation is supported by X-ray crystallography, since at pH 4 and 5, the heme-Fe tends to oxidize, while at pH 7, the oxy-heterodimer is present. Conformational changes also are observed at higher pH by the presence of a 605 nm transition associated with the iron heme-Tyr interaction. Therefore, pH is one crucial factor regulating the (HbII-HbIII)-O2 complex hydrogen-bonding network. Thus, it can be proposed that the hydrogen bonding adjustments between the heme bound O2 and the Tyr and Gln amino acids contribute to oxygen dissociation from the (HbII-HbIII)-O2 system.


Asunto(s)
Bivalvos/química , Hemoglobinas/química , Oxihemoglobinas/química , Animales , Cristalografía por Rayos X , Dimerización , Glutamina/química , Hemo/química , Hemoproteínas/química , Hemoglobinas/metabolismo , Enlace de Hidrógeno , Sulfuro de Hidrógeno/química , Concentración de Iones de Hidrógeno , Ligandos , Oxígeno/química , Oxihemoglobinas/metabolismo , Conformación Proteica , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA