Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Biol Chem ; 299(12): 105474, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981209

RESUMEN

G protein-coupled receptor (GPCR) signaling and trafficking are regulated by multiple mechanisms, including posttranslational modifications such as ubiquitination by E3 ubiquitin ligases. E3 ligases have been linked to agonist-stimulated ubiquitination of GPCRs via simultaneous binding to ßarrestins. In addition, ßarrestins have been suggested to assist E3 ligases for ubiquitination of key effector molecules, yet mechanistic insight is lacking. Here, we developed an in vitro reconstituted system and show that ßarrestin1 (ßarr1) serves as an adaptor between the effector protein signal-transducing adaptor molecule 1 (STAM1) and the E3 ligase atrophin-interacting protein 4. Via mass spectrometry, we identified seven lysine residues within STAM1 that are ubiquitinated and several types of ubiquitin linkages. We provide evidence that ßarr1 facilitates the formation of linear polyubiquitin chains at lysine residue 136 on STAM1. This lysine residue is important for stabilizing the ßarr1:STAM1 interaction in cells following GPCR activation. Our study identifies atrophin-interacting protein 4 as only the second E3 ligase known to conjugate linear polyubiquitin chains and a possible role for linear ubiquitin chains in GPCR signaling and trafficking.


Asunto(s)
Poliubiquitina , Ubiquitina-Proteína Ligasas , beta-Arrestina 1 , Lisina/metabolismo , Poliubiquitina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , beta-Arrestina 1/metabolismo
2.
J Biol Chem ; 298(9): 102351, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940305

RESUMEN

G protein-coupled receptor (GPCR) kinases (GRKs) and arrestins mediate GPCR desensitization, internalization, and signaling. The spatial pattern of GPCR phosphorylation is predicted to trigger these discrete GRK and arrestin-mediated functions. Here, we provide evidence that distal carboxyl-terminal tail (C-tail), but not proximal, phosphorylation of the chemokine receptor CXCR4 specifies ßarrestin1 (ßarr1)-dependent signaling. We demonstrate by pharmacologic inhibition of GRK2/3-mediated phosphorylation of the chemokine receptor CXCR4 coupled with site-directed mutagenesis and bioluminescence resonance energy transfer approaches that distal, not proximal, C-tail phosphorylation sites are required for recruitment of the adaptor protein STAM1 (signal-transducing adaptor molecule) to ßarr1 and focal adhesion kinase phosphorylation but not extracellular signal-regulated kinase 1/2 phosphorylation. In addition, we show that GPCRs that have similarly positioned C-tail phosphoresidues are also able to recruit STAM1 to ßarr1. However, although necessary for some GPCRs, we found that distal C-tail sites might not be sufficient to specify recruitment of STAM1 to ßarr1 for other GPCRs. In conclusion, this study provides evidence that distal C-tail phosphorylation sites specify GRK-ßarrestin-mediated signaling by CXCR4 and other GPCRs.


Asunto(s)
Arrestina , Quinasas de Receptores Acoplados a Proteína-G , Arrestina/metabolismo , Arrestinas/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Fosforilación/fisiología , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
3.
Breast Cancer Res ; 25(1): 62, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280713

RESUMEN

BACKGROUND: Although trastuzumab and other HER2-targeted therapies have significantly improved survival in patients with HER2 overexpressed or amplified (HER2+) breast cancer, a significant proportion of patients do not respond or eventually develop clinical resistance. Strategies to reverse trastuzumab resistance remain a high clinical priority. We were the first to report the role of CXCR4 in trastuzumab resistance. The present study aims to explore the therapeutic potential of targeting CXCR4 and better understand the associated mechanisms. METHODS: Immunofluorescent staining, confocal microscopy analysis, and immunoblotting were used to analyze CXCR4 expression. BrdU incorporation assays and flow cytometry were used to analyze dynamic CXCR4 expression. Three-dimensional co-culture (tumor cells/breast cancer-associated fibroblasts/human peripheral blood mononuclear cells) or antibody-dependent cellular cytotoxicity assay was used to mimic human tumor microenvironment, which is necessary for testing therapeutic effects of CXCR4 inhibitor or trastuzumab. The FDA-approved CXCR4 antagonist AMD3100, trastuzumab, and docetaxel chemotherapy were used to evaluate therapeutic efficacy in vitro and in vivo. Reverse phase protein array and immunoblotting were used to discern the associated molecular mechanisms. RESULTS: Using a panel of cell lines and patient breast cancer samples, we confirmed CXCR4 drives trastuzumab resistance in HER2+ breast cancer and further demonstrated the increased CXCR4 expression in trastuzumab-resistant cells is associated with cell cycle progression with a peak in the G2/M phases. Blocking CXCR4 with AMD3100 inhibits cell proliferation by downregulating mediators of G2-M transition, leading to G2/M arrest and abnormal mitosis. Using a panel of trastuzumab-resistant cell lines and an in vivo established trastuzumab-resistant xenograft mouse model, we demonstrated that targeting CXCR4 with AMD3100 suppresses tumor growth in vitro and in vivo, and synergizes with docetaxel. CONCLUSIONS: Our findings support CXCR4 as a novel therapeutic target and a predictive biomarker for trastuzumab resistance in HER2+ breast cancer.


Asunto(s)
Neoplasias de la Mama , Humanos , Animales , Ratones , Femenino , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Docetaxel/farmacología , Apoptosis , Leucocitos Mononucleares/metabolismo , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Mitosis , Resistencia a Antineoplásicos , Microambiente Tumoral , Receptores CXCR4/genética
4.
Nucleic Acids Res ; 49(5): 2740-2758, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33619536

RESUMEN

The major clinical problem in human cancer is metastasis. Metastases are the cause of 90% of human cancer deaths. TAp63 is a critical suppressor of tumorigenesis and metastasis. ΔNp63 acts as a dominant-negative inhibitor to block the function of p53 and TAp63. Although several ubiquitin E3 ligases have been reported to regulate p63 stability, the mechanism of p63 regulation remains partially understood. Herein, we show that CHIP, an E3 ligase with a U-box domain, physically interacts with p63 and promotes p63 degradation. Notably, Hsp70 depletion by siRNA stabilizes TAp63 in H1299 cells and destabilizes ΔNp63 in SCC9 cells. Loss of Hsp70 results in a reduction in the TAp63-CHIP interaction in H1299 cells and an increase in the interaction between ΔNp63 and CHIP in SCC9 cells. Our results reveal that Hsp70 acts as a molecular switch to control CHIP-mediated ubiquitination and degradation of p63 isoforms. Furthermore, regulation of p63 by the Hsp70-CHIP axis contributes to the migration and invasion of tumor cells. Hence, our findings demonstrate that Hsp70 is a crucial regulator of CHIP-mediated ubiquitination and degradation of p63 isoforms and identify a new pathway for maintaining TAp63 or ΔNp63 stability in cancers.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Animales , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Células Cultivadas , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Ratones , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/mortalidad , Transactivadores/metabolismo , Activación Transcripcional
5.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36834700

RESUMEN

ß-arrestins are multifaceted adaptor proteins that regulate various aspects of G protein-coupled receptor (GPCR) signaling. ß-arrestins are recruited to agonist-activated and phosphorylated GPCRs at the plasma membrane, thereby preventing G protein coupling, while also targeting GPCRs for internalization via clathrin-coated pits. In addition, ß-arrestins can activate various effector molecules to prosecute their role in GPCR signaling; however, the full extent of their interacting partners remains unknown. To discover potentially novel ß-arrestin interacting partners, we used APEX-based proximity labeling coupled with affinity purification and quantitative mass spectrometry. We appended APEX in-frame to the C-terminus of ß-arrestin1 (ßarr1-APEX), which we show does not impact its ability to support agonist-stimulated internalization of GPCRs. By using coimmunoprecipitation, we show that ßarr1-APEX interacts with known interacting proteins. Furthermore, following agonist stimulation ßarr1-APEX labeled known ßarr1-interacting partners as assessed by streptavidin affinity purification and immunoblotting. Aliquots were prepared in a similar manner and analyzed by tandem mass tag labeling and high-content quantitative mass spectrometry. Several proteins were found to be increased in abundance following GPCR stimulation. Biochemical experiments confirmed two novel proteins that interact with ß-arrestin1, which we predict are novel ligand-stimulated ßarr1 interacting partners. Our study highlights that ßarr1-APEX-based proximity labeling represents a valuable approach to identifying novel players involved in GPCR signaling.


Asunto(s)
Arrestinas , Receptores Acoplados a Proteínas G , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Arrestina beta 2/metabolismo
6.
J Biol Chem ; 295(41): 14111-14124, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32753481

RESUMEN

The multifaceted adaptor protein ß-arr1 (ß-arrestin1) promotes activation of focal adhesion kinase (FAK) by the chemokine receptor CXCR4, facilitating chemotaxis. This function of ß-arr1 requires the assistance of the adaptor protein STAM1 (signal-transducing adaptor molecule 1) because disruption of the interaction between STAM1 and ß-arr1 reduces CXCR4-mediated activation of FAK and chemotaxis. To begin to understand the mechanism by which ß-arr1 together with STAM1 activates FAK, we used site-directed spin-labeling EPR spectroscopy-based studies coupled with bioluminescence resonance energy transfer-based cellular studies to show that STAM1 is recruited to activated ß-arr1 by binding to a novel surface on ß-arr1 at the base of the finger loop, at a site that is distinct from the receptor-binding site. Expression of a STAM1-deficient binding ß-arr1 mutant that is still able to bind to CXCR4 significantly reduced CXCL12-induced activation of FAK but had no impact on ERK-1/2 activation. We provide evidence of a novel surface at the base of the finger loop that dictates non-GPCR interactions specifying ß-arrestin-dependent signaling by a GPCR. This surface might represent a previously unidentified switch region that engages with effector molecules to drive ß-arrestin signaling.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Complejos de Clasificación Endosomal Requeridos para el Transporte , Sistema de Señalización de MAP Quinasas , Fosfoproteínas , Receptores CXCR4 , beta-Arrestina 1 , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quimiocina CXCL12/química , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Células HEK293 , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Estructura Secundaria de Proteína , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , beta-Arrestina 1/química , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo
7.
J Biol Chem ; 295(40): 13927-13939, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32788219

RESUMEN

The human chemokine family consists of 46 protein ligands that induce chemotactic cell migration by activating a family of 23 G protein-coupled receptors. The two major chemokine subfamilies, CC and CXC, bind distinct receptor subsets. A sequence motif defining these families, the X position in the CXC motif, is not predicted to make significant contacts with the receptor, but instead links structural elements associated with binding and activation. Here, we use comparative analysis of chemokine NMR structures, structural modeling, and molecular dynamic simulations that suggested the X position reorients the chemokine N terminus. Using CXCL12 as a model CXC chemokine, deletion of the X residue (Pro-10) had little to no impact on the folded chemokine structure but diminished CXCR4 agonist activity as measured by ERK phosphorylation, chemotaxis, and Gi/o-mediated cAMP inhibition. Functional impairment was attributed to over 100-fold loss of CXCR4 binding affinity. Binding to the other CXCL12 receptor, ACKR3, was diminished nearly 500-fold. Deletion of Pro-10 had little effect on CXCL12 binding to the CXCR4 N terminus, a major component of the chemokine-GPCR interface. Replacement of the X residue with the most frequent amino acid at this position (P10Q) had an intermediate effect between WT and P10del in each assay, with ACKR3 having a higher tolerance for this mutation. This work shows that the X residue helps to position the CXCL12 N terminus for optimal docking into the orthosteric pocket of CXCR4 and suggests that the CC/CXC motif contributes directly to receptor selectivity by orienting the chemokine N terminus in a subfamily-specific direction.


Asunto(s)
Quimiocina CXCL12/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores CXCR4/química , Receptores CXCR/química , Secuencias de Aminoácidos , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Relación Estructura-Actividad
8.
J Biol Chem ; 294(20): 8023-8036, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30936203

RESUMEN

G protein-coupled receptor (GPCR) signaling is regulated by members of the protein kinase C (PKC) and GPCR kinase (GRK) families, although the relative contribution of each to GPCR function varies among specific GPCRs. The CXC motif receptor 4 (CXCR4) is a member of the GPCR superfamily that binds the CXC motif chemokine ligand 12 (CXCL12), initiating signaling that is subsequently terminated in part by internalization and lysosomal degradation of CXCR4. The purpose of this study is to define the relative contribution of PKC and GRK to CXCR4 signaling attenuation by studying their effects on CXCR4 lysosomal trafficking and degradation. Our results demonstrate that direct activation of PKC via the phorbol ester phorbol 12-myristate 13-acetate (PMA) mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal trafficking of CXCR4. In agreement, heterologous activation of PKC by stimulating the chemokine receptor CXCR5 with its ligand, CXCL13, also mimics CXCL12-mediated desensitization, internalization, ubiquitination, and lysosomal degradation of CXCR4. Similar to CXCL12, PMA promotes PKC-dependent phosphorylation of serine residues within CXCR4 C-tail that are required for binding and ubiquitination by the E3 ubiquitin ligase AIP4 (atrophin-interacting protein 4). However, inhibition of PKC activity does not alter CXCL12-mediated ubiquitination and degradation of CXCR4, suggesting that other kinases are also required. Accordingly, siRNA-mediated depletion of GRK6 results in decreased degradation and ubiquitination of CXCR4. Overall, these results suggest that PKC and GRK6 contribute to unique aspects of CXCR4 phosphorylation and lysosomal degradation to ensure proper signal propagation and termination.


Asunto(s)
Lisosomas/metabolismo , Proteolisis , Receptores CXCR4/metabolismo , Transducción de Señal , Ubiquitinación , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/metabolismo , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisosomas/genética , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/genética , Receptores CXCR4/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
9.
J Biol Chem ; 293(29): 11470-11480, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29899118

RESUMEN

Signaling activated by binding of the CXC motif chemokine ligand 12 (CXCL12) to its cognate G protein-coupled receptor (GPCR), chemokine CXC motif receptor 4 (CXCR4), is linked to metastatic disease. However, the mechanisms governing CXCR4 signaling remain poorly understood. Here, we show that endocytosis and early endosome antigen 1 (EEA1), which is part of the endosome fusion machinery, are required for CXCL12-mediated AKT Ser/Thr kinase (Akt) signaling selective for certain Akt substrates. Pharmacological inhibition of endocytosis partially attenuated CXCL12-induced phosphorylation of Akt, but not phosphorylation of ERK-1/2. Similarly, phosphorylation of Akt, but not ERK-1/2, stimulated by CXCL13, the cognate ligand for the chemokine receptor CXCR5, was also attenuated by inhibited endocytosis. Furthermore, siRNA-mediated depletion of the Rab5-effector EEA1, but not of adaptor protein, phosphotyrosine-interacting with PH domain and leucine zipper 1 (APPL1), partially attenuated Akt, but not ERK-1/2, phosphorylation promoted by CXCR4. Attenuation of Akt phosphorylation through inhibition of endocytosis or EEA1 depletion was associated with reduced signaling to Akt substrate forkhead box O1/3a but not the Akt substrates TSC complex subunit 2 or glycogen synthase kinase 3ß. This suggested that endocytosis and endosomes govern discrete aspects of CXCR4- or CXCR5-mediated Akt signaling. Consistent with this hypothesis, depletion of EEA1 reduced the ability of CXCL12 to attenuate apoptosis in suspended, but not adherent, HeLa cells. Our results suggest a mechanism whereby compartmentalized chemokine-mediated Akt signaling from endosomes suppresses the cancer-related process known as anoikis. Targeting this signaling pathway may help inhibit metastatic cancer involving receptors such as CXCR4.


Asunto(s)
Apoptosis , Endocitosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas , Fosforilación
10.
J Biol Chem ; 293(38): 14891-14904, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30087121

RESUMEN

Mutations in the KRAS proto-oncogene are present in 50% of all colorectal cancers and are increasingly associated with chemotherapeutic resistance to frontline biologic drugs. Accumulating evidence indicates key roles for overactive KRAS mutations in the metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis in cancer cells. Here, we sought to exploit the more negative membrane potential of cancer cell mitochondria as an untapped avenue for interfering with energy metabolism in KRAS variant-containing and KRAS WT colorectal cancer cells. Mitochondrial function, intracellular ATP levels, cellular uptake, energy sensor signaling, and functional effects on cancer cell proliferation were assayed. 3-Carboxyl proxyl nitroxide (Mito-CP) and Mito-Metformin, two mitochondria-targeted compounds, depleted intracellular ATP levels and persistently inhibited ATP-linked oxygen consumption in both KRAS WT and KRAS variant-containing colon cancer cells and had only limited effects on nontransformed intestinal epithelial cells. These anti-proliferative effects reflected the activation of AMP-activated protein kinase (AMPK) and the phosphorylation-mediated suppression of the mTOR target ribosomal protein S6 kinase B1 (RPS6KB1 or p70S6K). Moreover, Mito-CP and Mito-Metformin released Unc-51-like autophagy-activating kinase 1 (ULK1) from mTOR-mediated inhibition, affected mitochondrial morphology, and decreased mitochondrial membrane potential, all indicators of mitophagy. Pharmacological inhibition of the AMPK signaling cascade mitigated the anti-proliferative effects of Mito-CP and Mito-Metformin. This is the first demonstration that drugs selectively targeting mitochondria induce mitophagy in cancer cells. Targeting bioenergetic metabolism with mitochondria-targeted drugs to stimulate mitophagy provides an attractive approach for therapeutic intervention in KRAS WT and overactive mutant-expressing colon cancer.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/patología , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Metabolismo Energético , Genes ras , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proto-Oncogenes Mas , Transducción de Señal/efectos de los fármacos
11.
J Biol Chem ; 291(50): 26083-26097, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27789711

RESUMEN

The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the ß-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from ß-arrestin1 or STAM1, known to disrupt the ß-arrestin1·STAM1 complex, and RNAi against ß-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The ß-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with ß-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for ß-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The ß-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quimiotaxis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Receptores CXCR4/metabolismo , beta-Arrestina 1/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Quinasa 1 de Adhesión Focal/genética , Células HeLa , Humanos , Complejos Multiproteicos/genética , Fosfoproteínas/genética , Fosforilación/fisiología , Receptores CXCR4/genética , Transducción de Señal/fisiología , beta-Arrestina 1/genética
12.
J Biol Chem ; 290(11): 6810-24, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25605718

RESUMEN

G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Receptores CXCR4/metabolismo , Células HeLa , Humanos , Diana Mecanicista del Complejo 2 de la Rapamicina , Complejos Multiproteicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
13.
Biochemistry ; 52(24): 4184-92, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23697661

RESUMEN

Extracellular ubiquitin has recently been described as a CXC chemokine receptor (CXCR) 4 agonist. Studies on the structure-function relationship suggested that the C-terminus of ubiquitin facilitates CXCR4 activation. It remains unknown, however, whether C-terminal processing of ubiquitin could be biologically relevant and whether modifications of the ubiquitin C-terminus can modulate CXCR4 activation. We show that C-terminal truncated ubiquitin antagonizes ubiquitin and stromal cell-derived factor (SDF)-1α induced effects on cell signaling and function. Reduction of cell surface expression of insulin degrading enzyme (IDE), which cleaves the C-terminal di-Gly of ubiquitin, enhances ubiquitin induced reduction of cAMP levels in BV2 and THP-1 cells, but does not influence changes in cAMP levels in response to SDF-1α. Reduction of cell surface IDE expression in THP-1 cells also increases the chemotactic activity of ubiquitin. As compared with native ubiquitin, C-terminal Tyr extension of ubiquitin results in reduced CXCR4 mediated effects on cellular cAMP levels and abolishes chemotactic activity. Replacement of C-terminal di-Gly of ubiquitin with di-Val or di-Arg enhances CXCR4 mediated effects on cAMP levels and the di-Arg substitution exerts increased chemotactic activity, when compared with wild type ubiquitin. The chemotactic activities of the di-Val and di-Arg mutants and their effects on cAMP levels can be antagonized with C-terminal truncated ubiquitin. These data suggest that the development of CXCR4 ligands with enhanced agonist activities is possible and that C-terminal processing of ubiquitin could constitute a biological mechanism, which regulates termination of receptor signaling.


Asunto(s)
Receptores CXCR4/química , Ubiquitina/química , Animales , Línea Celular , Membrana Celular/metabolismo , Separación Celular , Quimiocina CXCL12/metabolismo , AMP Cíclico/metabolismo , Citometría de Flujo , Silenciador del Gen , Humanos , Insulina/química , Ratones , Unión Proteica , Estructura Terciaria de Proteína , ARN Interferente Pequeño/metabolismo , Receptores CXCR4/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Tirosina/química
14.
J Biol Chem ; 287(12): 9013-27, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22275353

RESUMEN

The CXCL12/CXCR4 signaling axis plays an important role in human health and disease; however, the molecular mechanisms mediating CXCR4 signaling remain poorly understood. Ubiquitin modification of CXCR4 by the E3 ubiquitin ligase AIP4 is required for lysosomal sorting and degradation, which is mediated by the endosomal sorting complex required for transport (ESCRT) machinery. CXCR4 sorting is regulated by an interaction between endosomal localized arrestin-2 and STAM-1, an ESCRT-0 component. Here, we report a novel role for AIP4 and STAM-1 in regulation of CXCR4 signaling that is distinct from their function in CXCR4 trafficking. Depletion of AIP4 and STAM-1 by siRNA caused significant inhibition of CXCR4-induced ERK-1/2 activation, whereas overexpression of these proteins enhanced CXCR4 signaling. We further show that AIP4 and STAM-1 physically interact and that the proline-rich region in AIP4 and the SH3 domain in STAM-1 are essential for the interaction. Overexpression of an AIP4 catalytically inactive mutant and a mutant that shows poor binding to STAM-1 fails to enhance CXCR4-induced ERK-1/2 signaling, as compared with wild-type AIP4, suggesting that the interaction between AIP4 and STAM-1 and the ligase activity of AIP4 are essential for ERK-1/2 activation. Remarkably, a discrete subpopulation of AIP4 and STAM-1 resides in caveolar microdomains with CXCR4 and appears to mediate ERK-1/2 signaling. We propose that AIP4-mediated ubiquitination of STAM-1 in caveolae coordinates activation of ERK-1/2 signaling. Thus, our study reveals a novel function for ubiquitin in the regulation of CXCR4 signaling, which may be broadly applicable to other G protein-coupled receptors.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Fosfoproteínas/metabolismo , Receptores CXCR4/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/química , Endosomas/metabolismo , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Unión Proteica , Estructura Terciaria de Proteína , Receptores CXCR4/química , Receptores CXCR4/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
15.
J Biol Chem ; 286(51): 44145-44152, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-22039044

RESUMEN

Ubiquitin, a post-translational protein modifier inside the cell, functions as a CXC chemokine receptor (CXCR) 4 agonist outside the cell. However, the structural determinants of the interaction between extracellular ubiquitin and CXCR4 remain unknown. Utilizing C-terminal truncated ubiquitin and ubiquitin mutants, in which surface residues that are known to interact with ubiquitin binding domains in interacting proteins are mutated (Phe-4, Leu-8, Ile-44, Asp-58, Val-70), we provide evidence that the ubiquitin-CXCR4 interaction follows a two-site binding mechanism in which the hydrophobic surfaces surrounding Phe-4 and Val-70 are important for receptor binding, whereas the flexible C terminus facilitates receptor activation. Based on these findings and the available crystal structures, we then modeled the ubiquitin-CXCR4 interface with the RosettaDock software followed by small manual adjustments, which were guided by charge complementarity and anticipation of a conformational switch of CXCR4 upon activation. This model suggests three residues of CXCR4 (Phe-29, Phe-189, Lys-271) as potential interaction sites. Binding studies with HEK293 cells overexpressing wild type and CXCR4 after site-directed mutagenesis confirm that these residues are important for ubiquitin binding but that they do not contribute to the binding of stromal cell-derived factor 1α. Our findings suggest that the structural determinants of the CXCR4 agonist activity of ubiquitin mimic the typical structure-function relationship of chemokines. Furthermore, we provide evidence for separate and specific ligand binding sites on CXCR4. As exogenous ubiquitin has been shown to possess therapeutic potential, our findings are expected to facilitate the structure-based design of new compounds with ubiquitin-mimetic actions on CXCR4.


Asunto(s)
Receptores CXCR4/metabolismo , Ubiquitina/química , Separación Celular , Quimiocina CXCL12/metabolismo , Biología Computacional/métodos , Citometría de Flujo , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Estructura Terciaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Relación Estructura-Actividad
16.
J Biol Chem ; 286(5): 3884-93, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21118812

RESUMEN

Nonvisual arrestins are regulated by direct post-translational modifications, such as phosphorylation, ubiquitination, and nitrosylation. However, whether arrestins are regulated by other post-translational modifications remains unknown. Here we show that nonvisual arrestins are modified by small ubiquitin-like modifier 1 (SUMO-1) upon activation of ß(2)-adrenergic receptor (ß(2)AR). Lysine residues 295 and 400 in arrestin-3 fall within canonical SUMO consensus sites, and mutagenic analysis reveals that Lys-400 represents the main SUMOylation site. Depletion of the SUMO E2 modifying enzyme Ubc9 blocks arrestin-3 SUMOylation and attenuates ß(2)AR internalization, suggesting that arrestin SUMOylation mediates G protein-coupled receptor endocytosis. Consistent with this, expression of a SUMO-deficient arrestin mutant failed to promote ß(2)AR internalization as compared with wild-type arrestin-3. Our data reveal an unprecedented role for SUMOylation in mediating GPCR endocytosis and provide novel mechanistic insight into arrestin function and regulation.


Asunto(s)
Arrestinas/metabolismo , Endocitosis , Receptores Acoplados a Proteínas G/metabolismo , Sumoilación/fisiología , Animales , Arrestinas/fisiología , Sitios de Unión , Bovinos , Línea Celular , Humanos , Procesamiento Proteico-Postraduccional , Receptores Adrenérgicos beta 2/metabolismo , Proteína SUMO-1/metabolismo
17.
J Biol Chem ; 286(38): 33466-77, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21757744

RESUMEN

Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gα(i)-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands.


Asunto(s)
Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Ubiquitina/metabolismo , Línea Celular , Quimiocina CXCL12/farmacología , Quimiotaxis/efectos de los fármacos , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Ligandos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Receptores CXCR4/agonistas , Receptores CXCR4/química , Ubiquitina/farmacología
18.
J Cell Biol ; 177(5): 905-16, 2007 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-17535965

RESUMEN

Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is irreversibly activated by proteolysis. Consequently, PAR1 trafficking is critical for the fidelity of thrombin signaling. PAR1 displays constitutive and agonist-induced internalization, which are clathrin and dynamin dependent but are independent of arrestins. The clathrin adaptor AP2 (adaptor protein complex-2) is critical for constitutive but not for activated PAR1 internalization. In this study, we show that ubiquitination negatively regulates PAR1 constitutive internalization and specifies a distinct clathrin adaptor requirement for activated receptor internalization. PAR1 is basally ubiquitinated and deubiquitinated after activation. A PAR1 lysineless mutant signaled normally but was not ubiquitinated. Constitutive internalization of ubiquitin (Ub)-deficient PAR1 was markedly increased and inhibited by the fusion of Ub to the cytoplasmic tail. Ub-deficient PAR1 constitutive internalization was AP2 dependent like the wild-type receptor. However, unlike wild-type PAR1, AP2 was required for the internalization of activated Ub-deficient receptor, suggesting that the internalization of ubiquitinated PAR1 requires different endocytic machinery. These studies reveal a novel function for ubiquitination in the regulation of GPCR internalization.


Asunto(s)
Clatrina/fisiología , Receptor PAR-1/metabolismo , Ubiquitina/metabolismo , Complejo 2 de Proteína Adaptadora/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Dinaminas/fisiología , Humanos , Datos de Secuencia Molecular , Mutación , Transporte de Proteínas , Ratas , Receptor PAR-1/química , Receptor PAR-1/genética
19.
Cancer Cell ; 6(5): 429-30, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15542424

RESUMEN

Unlocking the mysteries of cell metastasis, a major cause of cancer mortality, is essential in the development of novel therapies. In this issue of Cancer Cell, Li et al. (2004) identify a link between HER2 and CXCR4, two receptors previously implicated in breast cancer progression and metastasis. HER2 enhances the expression of CXCR4 by stimulating CXCR4 translation and attenuating CXCR4 degradation. Importantly, coexpression of HER2 and CXCR4 occurs in approximately 22% of human breast tumors and correlates with poor survival of breast cancer patients.


Asunto(s)
Neoplasias de la Mama/patología , Receptor ErbB-2/metabolismo , Receptores CXCR4/metabolismo , Adhesión Celular , Movimiento Celular , Humanos , Modelos Biológicos , Metástasis de la Neoplasia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Tasa de Supervivencia , Regulación hacia Arriba
20.
J Biol Chem ; 285(20): 15566-15576, 2010 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-20228059

RESUMEN

Ubiquitin is one of the most highly conserved proteins in eukaryotes and plays major biological roles as a post-translational protein modifier. Ubiquitin is also a natural constituent of plasma, and several lines of evidence suggest that extracellular ubiquitin is an immune modulator with anti-inflammatory properties. In addition, ubiquitin treatment has been shown to limit inflammation and reduce organ injury in various disease models and species in vivo. However, its mechanism of action is unknown. Here we show that extracellular ubiquitin is a natural CXC chemokine receptor 4 (CXCR4 and CD184) agonist. Extracellular ubiquitin promotes intracellular Ca(2+) flux and reduces cAMP levels through a G protein-coupled receptor that signals via a Galpha(i/o) protein in THP1 cells. Toll-like receptor 4 stimulation reduces ubiquitin-binding sites, which enabled identification of four Galpha(i/o) PCRs as ubiquitin receptor candidates. Overexpression of candidate genes in HEK293 cells, gene silencing in THP1 cells, competition binding, and signaling studies with the CXCR4 agonist stromal cell-derived factor-1alpha (chemokine (CXC motif) ligand 12) and inhibitor AMD3100 identify CXCR4 as a functional ubiquitin receptor. Our finding uncovers a fundamentally new aspect of the role of ubiquitin in biology, has implications for the understanding of CXCR4-mediated events, and is expected to facilitate development of new therapeutic avenues for a variety of diseases.


Asunto(s)
Receptores CXCR4/metabolismo , Ubiquitina/metabolismo , Animales , Calcio/metabolismo , Silenciador del Gen , Humanos , Ratones , Microscopía Confocal , Microscopía Fluorescente , Unión Proteica , Receptores CXCR4/agonistas , Receptores CXCR4/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA