Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Curr Diab Rep ; 17(7): 47, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28523592

RESUMEN

PURPOSE OF REVIEW: Type 1 diabetes mellitus (T1DM) is an autoimmune disease that results from the destruction of insulin-producing pancreatic ß cells in the islets of Langerhans. Islet cell transplantation has become a successful therapy for specific patients with T1DM with hypoglycemic unawareness. The reversal of T1DM by islet transplantation is now performed at many major medical facilities throughout the world. However, many challenges must still be overcome in order to achieve continuous, long-term successful transplant outcomes. Two major obstacles to this therapy are a lack of islet cells for transplantation and the need for life-long immunosuppressive treatment. Microencapsulation is seen as a technology that can overcome both these limitations of islet cell transplantation. This review depicts the present state of microencapsulated islet transplantation. RECENT FINDINGS: Microencapsulation can play a significant role in overcoming the need for immunosuppression and lack of donor islet cells. This review focuses on microencapsulation and the clinical status of the technology in combating T1DM.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Composición de Medicamentos , Islotes Pancreáticos/fisiología , Animales , Ensayos Clínicos como Asunto , Humanos , Trasplante de Islotes Pancreáticos
2.
Xenotransplantation ; 19(6): 355-64, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23198731

RESUMEN

BACKGROUND: The main hurdles to the widespread use of islet transplantation for the treatment of type 1 diabetes continue to be the insufficient number of appropriate donors and the need for immunosuppression. Microencapsulation has been proposed as a means to protect transplanted islets from the host's immune system. METHODS: This study investigated the function of human pancreatic islets encapsulated in Ca(2+) /Ba(2+) -alginate microbeads intraperitoneally transplanted in diabetic Balb/c mice. RESULTS: All mice transplanted with encapsulated human islets (n = 29), at a quantity of 3000 islet equivalent (IEQ), achieved normoglycemia 1 day after transplantation and retained normoglycemia for extended periods of time (mean graft survival 134 ± 17 days). In comparison, diabetic Balb/c mice transplanted with an equal amount of non-encapsulated human islets rejected the islets within 2 to 7 days after transplantation (n = 5). Microbeads retrieved after 232 days (n = 3) were found with little to no fibrotic overgrowth and contained viable insulin-positive islets. Immunofluorescent staining on the retrieved microbeads showed F4/80-positive macrophages and alpha smooth muscle actin-positive fibroblasts but no CD3-positive T lymphocytes. CONCLUSIONS: The Ca(2+) /Ba(2+) -alginate microbeads can protect human islets from xenogeneic rejection in immunocompetent mice without immunosuppression. However, grafts ultimately failed likely secondary to a macrophage-mediated foreign body reaction.


Asunto(s)
Composición de Medicamentos/métodos , Supervivencia de Injerto/fisiología , Islotes Pancreáticos/citología , Microesferas , Alginatos/metabolismo , Animales , Bario/metabolismo , Calcio/metabolismo , Diabetes Mellitus Tipo 1/terapia , Ácido Glucurónico/metabolismo , Supervivencia de Injerto/inmunología , Ácidos Hexurónicos/metabolismo , Humanos , Terapia de Inmunosupresión/métodos , Islotes Pancreáticos/inmunología , Trasplante de Islotes Pancreáticos/inmunología , Ratones , Ratones Endogámicos BALB C
3.
J Surg Res ; 168(1): e117-23, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21435661

RESUMEN

BACKGROUND: The anatomical spatial distribution of microencapsulated islets transplanted into the peritoneal cavity of large animals remains a relatively unexplored area of study. In this study, we developed a new implantation approach using laparoscopy in order to avoid microcapsule amalgamation. This approach constitutes a clinically relevant method, which can be used to evaluate the distribution and in vivo biocompatibility of various types of transplanted microcapsules in the future. MATERIALS AND METHODS: Two healthy baboons were implanted intraperitoneally with microencapsulated islets through mini-laparotomy and observed at 76 d after implantation. Nine baboons underwent laparoscopic implantation of approximately 80,000 empty microcapsules. Microcapsule distribution was observed by laparoscopic camera during and after implantation at 1, 2, and 4 wk. At each time point, microcapsules were retrieved and evaluated with brightfield microscopy and histologic analysis. RESULTS: Mini-laparotomic implantation resulted in microcapusle aggregation in both baboons. In contrast, laparoscopic implantation resulted in even distribution of microcapsules throughout the peritoneum without sedimentation to the Douglas space in all animals. In eight out of nine animals, retrieved microcapsules were evenly distributed in the peritoneal cavity and presented with no pericapsular overgrowth and easily washed out during laparoscopic procedure. The one exception was attributed to microcapsule contamination with blood from the abdominal wall following trocar insertion. CONCLUSIONS: Laparoscopic implantation of microcapsules in non-human primates can be successfully performed and prevents microcapsule aggregation. Given the current widespread clinical application of laparoscopy, we propose that this presented laparoscopy technique could be applied in future clinical trials of microencapsulated islet transplantation.


Asunto(s)
Cápsulas , Trasplante de Islotes Pancreáticos/métodos , Laparoscopía/métodos , Cavidad Peritoneal/cirugía , Animales , Femenino , Masculino , Modelos Animales , Papio anubis , Factores de Tiempo , Resultado del Tratamiento
4.
Pancreas ; 49(5): 706-713, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433410

RESUMEN

OBJECTIVES: Previously, we showed that diazoxide (DZ), an effective ischemic preconditioning agent, protected rodent pancreas against ischemia-reperfusion injury. Here, we further investigate whether DZ supplementation to University of Wisconsin (UW) solution during pancreas procurement and islet isolation has similar cytoprotection in a preclinical nonhuman primate model. METHODS: Cynomolgus monkey pancreata were flushed with UW or UW + 150 µM DZ during procurement and preserved for 8 hours before islet isolation. RESULTS: First, a significantly higher islet yield was observed in UW + DZ than in UW (57,887 vs 23,574 IEq/pancreas and 5396 vs 1646 IEq/g). Second, the DZ treated islets had significantly lower apoptotic cells per islet (1.64% vs 9.85%). Third, DZ significantly inhibited ROS surge during reperfusion with a dose-response manner. Fourth, DZ improved in vitro function of isolated islets determined by mitochondrial potentials and calcium influx in responses to glucose and KCI. Fifth, the DZ treated islets had much higher cure rate and better glycemia control in diabetic mice transplant model. CONCLUSIONS: This study showed a strong mitochondrial protection of DZ on nonhuman primate islets against ischemia-reperfusion injury that provides strong evidence for its clinical application in islet and pancreas transplantation.


Asunto(s)
Diazóxido/farmacología , Islotes Pancreáticos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Páncreas/efectos de los fármacos , Daño por Reperfusión/prevención & control , Animales , Apoptosis/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/cirugía , Femenino , Glucosa/farmacología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos/métodos , Macaca fascicularis , Masculino , Ratones , Mitocondrias/metabolismo , Soluciones Preservantes de Órganos/farmacología , Páncreas/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/fisiopatología , Vasodilatadores/farmacología
5.
Stem Cell Rev Rep ; 14(3): 370-384, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29546607

RESUMEN

Duchenne Muscular Dystrophy (DMD) is a progressive and lethal disease caused by mutations of the dystrophin gene. Currently no cure exists. Stem cell therapies targeting DMD are challenged by limited engraftment and rejection despite the use of immunosuppression. There is an urgent need to introduce new stem cell-based therapies that exhibit low allogenic profiles and improved cell engraftment. In this proof-of-concept study, we develop and test a new human stem cell-based approach to increase engraftment, limit rejection, and restore dystrophin expression in the mdx/scid mouse model of DMD. We introduce two Dystrophin Expressing Chimeric (DEC) cell lines created by ex vivo fusion of human myoblasts (MB) derived from two normal donors (MBN1/MBN2), and normal and DMD donors (MBN/MBDMD). The efficacy of fusion was confirmed by flow cytometry and confocal microscopy based on donor cell fluorescent labeling (PKH26/PKH67). In vitro, DEC displayed phenotype and genotype of donor parent cells, expressed dystrophin, and maintained proliferation and myogenic differentiation. In vivo, local delivery of both DEC lines (0.5 × 106) restored dystrophin expression (17.27%±8.05-MBN1/MBN2 and 23.79%±3.82-MBN/MBDMD) which correlated with significant improvement of muscle force, contraction and tolerance to fatigue at 90 days after DEC transplant to the gastrocnemius muscles (GM) of dystrophin-deficient mdx/scid mice. This study establishes DEC as a potential therapy for DMD and other types of muscular dystrophies.


Asunto(s)
Distrofina/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Células Cultivadas , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Desarrollo de Músculos/genética , Desarrollo de Músculos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Nat Biomed Eng ; 2(11): 810-821, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30873298

RESUMEN

The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials. Although one month post-implantation all formulations elicited significant FBR and PFO, three chemically modified, immune-modulating alginate formulations elicited reduced FBR. In conjunction with a minimally invasive transplantation technique into the bursa omentalis of NHPs, the most promising chemically modified alginate derivative (Z1-Y15) protected viable and glucose-responsive allogeneic islets for 4 months without the need for immunosuppression. Chemically modified alginate formulations may enable the long-term transplantation of islets for the correction of insulin deficiency.

7.
Cell Transplant ; 26(1): 33-44, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27524672

RESUMEN

This study investigates manufacturing procedures that affect islet isolation outcomes from donor pancreata standardized by the North American Islet Donor Score (NAIDS). Islet isolations performed at the University of Illinois, Chicago, from pancreata with NAIDS ≥65 were investigated. The research cohort was categorized into two groups based on a postpurification yield either greater than (group A) or less than (group B) 400,000 IEQ. Associations between manufacturing procedures and islet isolation outcomes were analyzed using multivariate logistic or linear regressions. A total of 119 cases were retrieved from 630 islet isolations performed since 2003. Group A is composed of 40 cases with an average postpurified yield of 570,098 IEQ, whereas group B comprised 79 cases with an average yield of 235,987 IEQ. One third of 119 cases were considered successful islet isolations that yielded >400,000 IEQ. The prepurified and postpurified islet product outcome parameters were detailed for future reference. The NAIDS (>80 vs. 65-80) [odds ratio (OR): 2.91, 95% confidence interval (CI): 1.27-6.70], cold ischemic time (≤10 vs. >10 h) (OR: 3.68, 95% CI: 1.61-8.39), and enzyme perfusion method (mechanical vs. manual) (OR: 2.38, 95% CI: 1.01-5.56) were independent determinants for postpurified islet yield ≥400,000 IEQ. The NAIDS (>80, p < 0.001), cold ischemic time (≤10 h, p < 0.05), increased unit of collagenase (p < 0.01), and pancreatic duct cannulation time (<30 min, p < 0.01) all independently correlated with better islet quantity parameters. Furthermore, cold ischemic time (≤10 h, p < 0.05), liberase MTF (p < 0.001), increased unit of collagenase (p < 0.05), duct cannulation time (<30 min, p < 0.05), and mechanical enzyme perfusion (p < 0.05) were independently associated with better islet morphology score. Analysis of islet manufacturing procedures from the pancreata with standardized quality is essential in identifying technical issues within islet isolation. Adequate processing duration in each step of islet isolation, using liberase MTF, and mechanical enzyme perfusion all affect isolation outcomes.


Asunto(s)
Trasplante de Islotes Pancreáticos/normas , Islotes Pancreáticos/cirugía , Donantes de Tejidos/estadística & datos numéricos , Adulto , Anciano , Glucemia , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , América del Norte , Páncreas
8.
Lab Chip ; 16(8): 1466-72, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-26999734

RESUMEN

In this study, we present a microfluidic array for high-resolution imaging of individual pancreatic islets. The device is based on hydrodynamic trapping principle and enables real-time analysis of islet cellular responses to insulin secretagogues. This device has significant advantages over our previously published perifusion chamber device including significantly increased analytical power and assay sensitivity, as well as improved spatiotemporal resolution. The islet array, with live-cell multiparametric imaging integration, provides a better tool to understand the physiological and pathophysiological changes of pancreatic islets through the analysis of single islet responses. This platform demonstrates the feasibility of array-based islet cellular analysis and opens up a new modality to conduct informative and quantitive evaluation of islets and cell-based screening for new diabetes treatments.


Asunto(s)
Islotes Pancreáticos/citología , Dispositivos Laboratorio en un Chip , Imagen Molecular/instrumentación , Animales , Supervivencia Celular , Estudios de Factibilidad , Humanos , Ratones
9.
Tissue Eng Part A ; 20(1-2): 324-34, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23971677

RESUMEN

Pericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated pancreatic islets. Modification of the microcapsule membrane aimed at preventing PFO should improve graft survival. This study investigated the effect of macromolecular Corline Heparin Conjugate (CHC) binding on intrinsic properties of alginate microcapsules and assessed the anti-fibrotic potential of this strategy both in vitro and in vivo. CHC was bound to alginate microcapsules using a layer-by-layer approach incorporating avidin. CHC binding to alginate microcapsule was visualized by confocal microscopy. Effects of CHC binding on microcapsule size, strength, and permeability were assessed, and the anti-clotting activity of bound CHC was determined by coagulation assay. Effect of CHC binding on the viability of encapsulated human islets was assessed in vitro, and their ability to function was assessed both in vitro and in vivo in diabetic immunodeficient mice. The potential of bound CHC to reduce PFO was assessed in vivo in different rat transplantation models. Confocal microscopy demonstrated a uniform coating of CHC onto the surface of microcapsules. CHC binding affected neither size nor permeability but significantly increased the tensile strength of alginate microcapsules by ~1.3-fold. The bound CHC molecules were stable and retained their anti-clotting activity for 3 weeks in culture. CHC binding affected neither viability nor function of the encapsulated human islets in vitro. In vivo CHC binding did not compromise islet function, and diabetes was reversed in all recipients with mice exhibiting lower blood glucose levels similar to controls in oral glucose tolerance tests. CHC binding was beneficial and significantly reduced PFO in both syngeneic and allogeneic rat transplantation models by ~65% and ~43%, respectively. In conclusion, our results show a new method to successfully coat CHC on alginate microcapsules and demonstrate its beneficial effect in increasing capsule strength and reduce PFO. This strategy has the potential to improve graft survival of encapsulated human islets.


Asunto(s)
Alginatos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Heparina/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Cápsulas , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Fibrosis , Ácido Glucurónico/farmacología , Ácidos Hexurónicos/farmacología , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/fisiología , Trasplante de Islotes Pancreáticos , Masculino , Ratones , Ratones SCID , Preservación de Órganos , Permeabilidad/efectos de los fármacos , Ratas , Ratas Endogámicas Lew
10.
Pancreas ; 43(2): 226-35, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24518500

RESUMEN

OBJECTIVES: The present study describes a simple and cost-effective islet isolation procedure. Using this method, allogeneic islets reverse diabetes in cynomolgus monkeys. METHODS: Pancreatic tissue from 11 cynomolgus monkeys were digested, collected, and purified using a simplified method. Islet quantification, purity, viability, and glucose static incubation were conducted immediately after isolation. Five streptozotocin-induced monkeys with diabetes were transplanted intrahepatically, and liver biopsies from 3 of these monkeys were taken at different time points for histologic study. RESULTS: The mean (SD) of viability, purity, and static glucose incubation stimulation index were 94.4% (2.3%), 91.8% (3.4%), and 2.6 (1.7), respectively. Monkeys who received a mean (SD) dose of 19,968 (2273) islet equivalent per kilogram (n = 4) from 2 to 3 donors who achieved prolonged normoglycemia (57-232 days), whereas the single monkey who received an islet dose of 8000 islet equivalent per kilogram did not experience diabetes reversal. Immunohistochemical assessment of the liver biopsies taken from the monkeys with normoglycemia revealed an insulin- and glucagon-positive islet graft for up to 6 months with minimal peri-islet inflammatory infiltration. CONCLUSIONS: This study demonstrates that cynomolgus monkey islets can be successfully and efficiently harvested using a simple isolation method, and these islets can restore normoglycemia in monkeys with diabetes.


Asunto(s)
Diabetes Mellitus Experimental/cirugía , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos , Recolección de Tejidos y Órganos/métodos , Animales , Glucemia/metabolismo , Péptido C/sangre , Diabetes Mellitus Experimental/sangre , Femenino , Prueba de Tolerancia a la Glucosa , Macaca fascicularis , Masculino , Factores de Tiempo , Trasplante Homólogo , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA