Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 629(8014): 1015-1020, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38811709

RESUMEN

Asteroids with diameters less than about 5 km have complex histories because they are small enough for radiative torques (that is, YORP, short for the Yarkovsky-O'Keefe-Radzievskii-Paddack effect)1 to be a notable factor in their evolution2. (152830) Dinkinesh is a small asteroid orbiting the Sun near the inner edge of the main asteroid belt with a heliocentric semimajor axis of 2.19 AU; its S-type spectrum3,4 is typical of bodies in this part of the main belt5. Here we report observations by the Lucy spacecraft6,7 as it passed within 431 km of Dinkinesh. Lucy revealed Dinkinesh, which has an effective diameter of only 720 m, to be unexpectedly complex. Of particular note is the presence of a prominent longitudinal trough overlain by a substantial equatorial ridge and the discovery of the first confirmed contact binary satellite, now named (152830) Dinkinesh I Selam. Selam consists of two near-equal-sized lobes with diameters of 210 m and 230 m. It orbits Dinkinesh at a distance of 3.1 km with an orbital period of about 52.7 h and is tidally locked. The dynamical state, angular momentum and geomorphologic observations of the system lead us to infer that the ridge and trough of Dinkinesh are probably the result of mass failure resulting from spin-up by YORP followed by the partial reaccretion of the shed material. Selam probably accreted from material shed by this event.

2.
Proc Natl Acad Sci U S A ; 120(43): e2309181120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812730

RESUMEN

Highly siderophile elements (HSEs; namely Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) in Earth's mantle require the addition of metals after the formation of Earth's core. Early, large collisions have the potential to deliver metals, but the details of their mixing with Earth's mantle remain unresolved. As a large projectile disrupts and penetrates Earth's mantle, a fraction of its metallic core may directly merge with Earth's core. Ensuing gravitational instabilities remove the remaining projectile's core stranded in Earth's mantle, leaving the latter deprived of HSEs. Here, we propose a framework that can efficiently retain the metallic components during large impacts. The mechanism is based on the ubiquitous presence of a partially molten region in the mantle beneath an impact-generated magma ocean, and it involves rapid three-phase flow with solid silicate, molten silicate, and liquid metal as well as long-term mixing by mantle convection. In addition, large low-shear-velocity provinces in the lower mantle may originate from compositional heterogeneities resulting from the proposed three-phase flow during high-energy collisions.

3.
Nature ; 534(7607): 352-5, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27281196

RESUMEN

The solid, central part of a comet--its nucleus--is subject to destructive processes, which cause nuclei to split at a rate of about 0.01 per year per comet. These destructive events are due to a range of possible thermophysical effects; however, the geophysical expressions of these effects are unknown. Separately, over two-thirds of comet nuclei that have been imaged at high resolution show bilobate shapes, including the nucleus of comet 67P/Churyumov-Gerasimenko (67P), visited by the Rosetta spacecraft. Analysis of the Rosetta observations suggests that 67P's components were brought together at low speed after their separate formation. Here, we study the structure and dynamics of 67P's nucleus. We find that sublimation torques have caused the nucleus to spin up in the past to form the large cracks observed on its neck. However, the chaotic evolution of its spin state has so far forestalled its splitting, although it should eventually reach a rapid enough spin rate to do so. Once this occurs, the separated components will be unable to escape each other; they will orbit each other for a time, ultimately undergoing a low-speed merger that will result in a new bilobate configuration. The components of four other imaged bilobate nuclei have volume ratios that are consistent with a similar reconfiguration cycle, pointing to such cycles as a fundamental process in the evolution of short-period comet nuclei. It has been shown that comets were not strong contributors to the so-called late heavy bombardment about 4 billion years ago. The reconfiguration process suggested here would preferentially decimate comet nuclei during migration to the inner solar system, perhaps explaining this lack of a substantial cometary flux.

4.
Nature ; 508(7495): 233-6, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24695219

RESUMEN

Space missions and thermal infrared observations have shown that small asteroids (kilometre-sized or smaller) are covered by a layer of centimetre-sized or smaller particles, which constitute the regolith. Regolith generation has traditionally been attributed to the fall back of impact ejecta and by the break-up of boulders by micrometeoroid impact. Laboratory experiments and impact models, however, show that crater ejecta velocities are typically greater than several tens of centimetres per second, which corresponds to the gravitational escape velocity of kilometre-sized asteroids. Therefore, impact debris cannot be the main source of regolith on small asteroids. Here we report that thermal fatigue, a mechanism of rock weathering and fragmentation with no subsequent ejection, is the dominant process governing regolith generation on small asteroids. We find that thermal fragmentation induced by the diurnal temperature variations breaks up rocks larger than a few centimetres more quickly than do micrometeoroid impacts. Because thermal fragmentation is independent of asteroid size, this process can also contribute to regolith production on larger asteroids. Production of fresh regolith originating in thermal fatigue fragmentation may be an important process for the rejuvenation of the surfaces of near-Earth asteroids, and may explain the observed lack of low-perihelion, carbonaceous, near-Earth asteroids.

5.
Nature ; 499(7456): 59-61, 2013 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-23823793

RESUMEN

The most heavily cratered terrains on Mercury have been estimated to be about 4 billion years (Gyr) old, but this was based on images of only about 45 per cent of the surface; even older regions could have existed in the unobserved portion. These terrains have a lower density of craters less than 100 km in diameter than does the Moon, an observation attributed to preferential resurfacing on Mercury. Here we report global crater statistics of Mercury's most heavily cratered terrains on the entire surface. Applying a recent model for early lunar crater chronology and an updated dynamical extrapolation to Mercury, we find that the oldest surfaces were emplaced just after the start of the Late Heavy Bombardment (LHB) about 4.0-4.1 Gyr ago. Mercury's global record of large impact basins, which has hitherto not been dated, yields a similar surface age. This agreement implies that resurfacing was global and was due to volcanism, as previously suggested. This activity ended during the tail of the LHB, within about 300-400 million years after the emplacement of the oldest terrains on Mercury. These findings suggest that persistent volcanism could have been aided by the surge of basin-scale impacts during this bombardment.

6.
Nature ; 467(7317): 814-6, 2010 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-20944742

RESUMEN

The peculiar object P/2010 A2 was discovered in January 2010 and given a cometary designation because of the presence of a trail of material, although there was no central condensation or coma. The appearance of this object, in an asteroidal orbit (small eccentricity and inclination) in the inner main asteroid belt attracted attention as a potential new member of the recently recognized class of main-belt comets. If confirmed, this new object would expand the range in heliocentric distance over which main-belt comets are found. Here we report observations of P/2010 A2 by the Rosetta spacecraft. We conclude that the trail arose from a single event, rather than a period of cometary activity, in agreement with independent results. The trail is made up of relatively large particles of millimetre to centimetre size that remain close to the parent asteroid. The shape of the trail can be explained by an initial impact ejecting large clumps of debris that disintegrated and dispersed almost immediately. We determine that this was an asteroid collision that occurred around 10 February 2009.

7.
Nat Commun ; 13(1): 4817, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35974008

RESUMEN

NASA's Gravity Recovery and Interior Laboratory (GRAIL) spacecraft revealed the crust of the Moon is highly porous, with ~4% porosity at 20 km deep. The deep lying porosity discovered by GRAIL has been difficult to explain, with most current models only able to explain high porosity near the lunar surface (first few kilometers) or inside complex craters. Using hydrocode routines we simulated fracturing and generation of porosity by large impacts in lunar, martian, and Earth crust. Our simulations indicate impacts that produce 100-1000 km scale basins alone are capable of producing all observed porosity within the lunar crust. Simulations under the higher surface gravity of Mars and Earth suggest basin forming impacts can be a primary source of porosity and fracturing of ancient planetary crusts. Thus, we show that impacts could have supported widespread crustal fluid circulation, with important implications for subsurface habitable environments on early Earth and Mars.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Planeta Tierra , Luna , Porosidad
8.
Space Sci Rev ; 218(3): 17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431348

RESUMEN

The asteroid (16) Psyche may be the metal-rich remnant of a differentiated planetesimal, or it may be a highly reduced, metal-rich asteroidal material that never differentiated. The NASA Psyche mission aims to determine Psyche's provenance. Here we describe the possible solar system regions of origin for Psyche, prior to its likely implantation into the asteroid belt, the physical and chemical processes that can enrich metal in an asteroid, and possible meteoritic analogs. The spacecraft payload is designed to be able to discriminate among possible formation theories. The project will determine Psyche's origin and formation by measuring any strong remanent magnetic fields, which would imply it was the core of a differentiated body; the scale of metal to silicate mixing will be determined by both the neutron spectrometers and the filtered images; the degree of disruption between metal and rock may be determined by the correlation of gravity with composition; some mineralogy (e.g., modeled silicate/metal ratio, and inferred existence of low-calcium pyroxene or olivine, for example) will be detected using filtered images; and the nickel content of Psyche's metal phase will be measured using the GRNS.

9.
BMC Bioinformatics ; 12: 397, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21992002

RESUMEN

BACKGROUND: Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events. RESULTS: This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard. CONCLUSIONS: The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.


Asunto(s)
Minería de Datos , Vocabulario Controlado , Biología Computacional , Bases de Datos Factuales , Humanos , Semántica
10.
Gerodontology ; 27(4): 315-8, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19469879

RESUMEN

INTRODUCTION: Resin-bonded extracoronal attachments may be indicated for the abutment teeth of removable partial dentures, especially for anterior teeth when a cingulum rest must be provided. This type of treatment has a series of advantages such as minimal tooth reduction, supragingival margins, favourable stress distribution, and improved aesthetic appearance. OBJECTIVE: To report a clinical case of oral rehabilitation using a combination of resin-bonded extracoronal attachments joined by a Dolder bar with a removable partial denture. CASE REPORT: A 60-year-old male patient with only the canines in the maxillary arch was restored with a combination of resin-bonded extracoronal attachments joined by a Dolder bar and a removable partial denture. CONCLUSION: Dentures with resin-bonded extracoronal attachments can have a number of advantages over traditional clasp-retained removable partial dentures.


Asunto(s)
Diseño de Dentadura , Ajuste de Precisión de Prótesis , Dentadura Parcial Removible , Pilares Dentales , Recubrimiento Dental Adhesivo/métodos , Diseño de Prótesis Dental , Ajuste de Precisión de Prótesis/clasificación , Retención de Dentadura/instrumentación , Humanos , Arcada Parcialmente Edéntula/patología , Arcada Parcialmente Edéntula/rehabilitación , Masculino , Maxilar/patología , Metilmetacrilatos/química , Persona de Mediana Edad , Cementos de Resina/química
11.
Sci Adv ; 6(7): eaay2338, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32095525

RESUMEN

The approximately chondritic estimated relative abundances of highly siderophile elements (HSE) in the bulk martian mantle suggest that these elements were added after Mars' core formed. The shergottite-nakhlite-chassigny (SNC) meteorites imply an average mantle Pt abundance of ≈3 to 5 parts per billion, which requires the addition of 1.6 × 1021 kilograms of chondritic material, or 0.25% martian masses, to the silicate Mars. Here, we present smoothed particle hydro-dynamics impact simulations that show that Mars' HSE abundances imply one to three late collisions by large differentiated projectiles. We show that these collisions would produce a compositionally heterogeneous martian mantle. Based mainly on W isotopes, it has been argued that Mars grew rapidly in only about 2 to 4 million years (Ma). However, we find that impact generation of mantle domains with variably fractionated Hf/W and diverse 182W could imply a Mars formation time scale up to 15 Ma.

12.
Sci Rep ; 10(1): 4737, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32179758

RESUMEN

Mercury's images obtained by the 1974 Mariner 10 flybys show extensive cratered landscapes degraded into vast knob fields, known as chaotic terrain (AKA hilly and lineated terrain). For nearly half a century, it was considered that these terrains formed due to catastrophic quakes and ejecta fallout produced by the antipodal Caloris basin impact. Here, we present the terrains' first geologic examination based on higher spatial resolution MESSENGER (MErcury Surface Space ENvironment GEochemistry and Ranging) imagery and laser altimeter topography. Our surface age determinations indicate that their development persisted until ~1.8 Ga, or ~2 Gyrs after the Caloris basin formed. Furthermore, we identified multiple chaotic terrains with no antipodal impact basins; hence a new geological explanation is needed. Our examination of the Caloris basin's antipodal chaotic terrain reveals multi-kilometer surface elevation losses and widespread landform retention, indicating an origin due to major, gradual collapse of a volatile-rich layer. Crater interior plains, possibly lavas, share the chaotic terrains' age, suggesting a development associated with a geothermal disturbance above intrusive magma bodies, which best explains their regionality and the enormity of the apparent volume losses involved in their development. Furthermore, evidence of localized, surficial collapse, might reflect a complementary, and perhaps longer lasting, devolatilization history by solar heating.

13.
Sci Adv ; 4(3): e1701645, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29546235

RESUMEN

Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres' surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.

14.
Sci Rep ; 5: 16029, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26522880

RESUMEN

Boulders are ubiquitously found on the surfaces of small rocky bodies in the inner solar system and their spatial and size distributions give insight into the geological evolution and collisional history of the parent bodies. Using images acquired by the Chang'e-2 spacecraft, more than 200 boulders have been identified over the imaged area of the near-Earth asteroid Toutatis. The cumulative boulder size frequency distribution (SFD) shows a steep slope of -4.4 ± 0.1, which is indicative of a high degree of fragmentation. Similar to Itokawa, Toutatis probably has a rubble-pile structure, as most boulders on its surface cannot solely be explained by impact cratering. The significantly steeper slope for Toutatis' boulder SFD compared to Itokawa may imply a different preservation state or diverse formation scenarios. In addition, the cumulative crater SFD has been used to estimate a surface crater retention age of approximately 1.6 ± 0.3 Gyr.

15.
Science ; 347(6220): aaa0440, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613893

RESUMEN

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

16.
Science ; 347(6220): aaa1044, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25613897

RESUMEN

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

17.
Int J Clin Exp Hypn ; 60(1): 54-66, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22098569

RESUMEN

The study analyzed the writing products of subjects with high (highs) and low (lows) hypnotizability. The participants were asked to write short texts in response to highly imaginative scenarios in standard conditions. The texts were processed through computerized and manual methods. The results showed that the highs' texts were more sophisticated due to a higher number of abstract nouns, more intense and imaginative due to a larger number of similes, metaphors, and onomatopoeias, and less detailed due to a higher nouns-to-adjectives ratio. The differences in the use of abstract nouns and highly imageable expressions are discussed in relation to the preeminent left-hemisphere activity of highs during wakefulness and to a possibly different involvement of the precuneus, which is involved in hypnotic phenomena.


Asunto(s)
Hipnosis , Escritura , Adulto , Femenino , Humanos , Lingüística , Adulto Joven
18.
Science ; 336(6082): 694-7, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22582256

RESUMEN

Dawn's global mapping of Vesta reveals that its observed south polar depression is composed of two overlapping giant impact features. These large basins provide exceptional windows into impact processes at planetary scales. The youngest, Rheasilvia, is 500 kilometers wide and 19 kilometers deep and finds its nearest morphologic analog among large basins on low-gravity icy satellites. Extensive ejecta deposits occur, but impact melt volume is low, exposing an unusual spiral fracture pattern that is likely related to faulting during uplift and convergence of the basin floor. Rheasilvia obliterated half of another 400-kilometer-wide impact basin, Veneneia. Both basins are unexpectedly young, roughly 1 to 2 billion years, and their formation substantially reset Vestan geology and excavated sufficient volumes of older compositionally heterogeneous crustal material to have created the Vestoids and howardite-eucrite-diogenite meteorites.

19.
Science ; 329(5992): 668-71, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20647421

RESUMEN

During its first two flybys of Mercury, the MESSENGER spacecraft acquired images confirming that pervasive volcanism occurred early in the planet's history. MESSENGER's third Mercury flyby revealed a 290-kilometer-diameter peak-ring impact basin, among the youngest basins yet seen, having an inner floor filled with spectrally distinct smooth plains. These plains are sparsely cratered, postdate the formation of the basin, apparently formed from material that once flowed across the surface, and are therefore interpreted to be volcanic in origin. An irregular depression surrounded by a halo of bright deposits northeast of the basin marks a candidate explosive volcanic vent larger than any previously identified on Mercury. Volcanism on the planet thus spanned a considerable duration, perhaps extending well into the second half of solar system history.

20.
Rev. Esc. Farm. Odontol. Alfenas ; (17): 56-60, jan.-dez. 1995. tab
Artículo en Portugués | LILACS, BBO - odontología (Brasil) | ID: biblio-856334

RESUMEN

Procurou-se verificar a ação in vitro de diferentes anti-sépticos bucais sobre as cepas de Candida albicans isoladas de próteses totais superiores. O teste de sensibilidade revelou que os anti-sépticos: Periogard, Malvona e Cepacol foram ativos para as cepas de levedura isoladas, ou seja, apresentam 100 por cento de atividade, enquanto o Listerine foi ativo somente em 10 (58,8 por cento) das amostras testadas


Asunto(s)
Antisépticos Bucales/efectos adversos , Candida albicans/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA