RESUMEN
The Drosophila eye has been an important model to understand principles of differentiation, proliferation, apoptosis and tissue morphogenesis. However, a single cell RNA sequence resource that captures gene expression dynamics from the initiation of differentiation to the specification of different cell types in the larval eye disc is lacking. Here, we report transcriptomic data from 13,000 cells that cover six developmental stages of the larval eye. Our data show cell clusters that correspond to all major cell types present in the eye disc ranging from the initiation of the morphogenetic furrow to the differentiation of each photoreceptor cell type as well as early cone cells. We identify dozens of cell type-specific genes whose function in different aspects of eye development have not been reported. These single cell data will greatly aid research groups studying different aspects of early eye development and will facilitate a deeper understanding of the larval eye as a model system.
Asunto(s)
Ojo , Larva , Análisis de la Célula Individual , Animales , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Ojo/metabolismo , Ojo/crecimiento & desarrollo , Perfilación de la Expresión Génica , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Análisis de Secuencia de ARNRESUMEN
The Ets domain transcription factors direct diverse biological processes throughout all metazoans and are implicated in development as well as in tumor initiation, progression and metastasis. The Drosophila Ets transcription factor Pointed (Pnt) is the downstream effector of the Epidermal growth factor receptor (Egfr) pathway and is required for cell cycle progression, specification, and differentiation of most cell types in the larval eye disc. Despite its critical role in development, very few targets of Pnt have been reported previously. Here, we employed an integrated approach by combining genome-wide single cell and bulk data to identify putative cell type-specific Pnt targets. First, we used chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) to determine the genome-wide occupancy of Pnt in late larval eye discs. We identified enriched regions that mapped to an average of 6,941 genes, the vast majority of which are novel putative Pnt targets. Next, we integrated ChIP-seq data with two other larval eye single cell genomics datasets (scRNA-seq and snATAC-seq) to reveal 157 putative cell type-specific Pnt targets that may help mediate unique cell type responses upon Egfr-induced differentiation. Finally, our integrated data also predicts cell type-specific functional enhancers that were not reported previously. Together, our study provides a greatly expanded list of putative cell type-specific Pnt targets in the eye and is a resource for future studies that will allow mechanistic insights into complex developmental processes regulated by Egfr signaling.
Asunto(s)
Drosophila , Genómica , Animales , Diferenciación Celular , Receptores ErbB , Larva , Proteínas Proto-Oncogénicas c-etsRESUMEN
Efforts towards an effective HIV-1 vaccine have remained mainly unsuccessful. There is increasing evidence for a potential role of HLA-C-restricted CD8+ T cell responses in HIV-1 control, including our recent report of HLA-C*03:02 among African children. However, there are no documented optimal HIV-1 CD8+ T cell epitopes restricted by HLA-C*03:02; additionally, the structural influence of HLA-C*03:02 on epitope binding is undetermined. Immunoinformatics approaches provide a fast and inexpensive method to discover HLA-restricted epitopes. Here, we employed immunopeptidomics to identify HLA-C*03:02 CD8+ T cell epitopes. We identified a clade-specific Gag-derived GY9 (GTEELRSLY) HIV-1 p17 matrix epitope potentially restricted to HLA-C*03:02. Residues E62, T142, and E151 in the HLA-C*03:02 binding groove and positions p3, p6, and p9 on the GY9 epitope are crucial in shaping and stabilizing the epitope binding. Our findings support the growing evidence of the contribution of HLA-C molecules to HIV-1 control and provide a prospect for vaccine strategies.
Asunto(s)
Epítopos de Linfocito T , VIH-1 , Antígenos HLA-C , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Humanos , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Antígenos HLA-C/inmunología , Antígenos HLA-C/metabolismo , Antígenos HLA-C/genética , VIH-1/inmunología , VIH-1/genética , Linfocitos T Citotóxicos/inmunología , Secuencia de Aminoácidos , Unión Proteica , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Antígenos VIHRESUMEN
Large-scale, population-based genomic studies have provided a context for modern medical genetics. Among such studies, however, African populations have remained relatively underrepresented. The breadth of genetic diversity across the African continent argues for an exploration of local genomic context to facilitate burgeoning disease mapping studies in Africa. We sought to characterize genetic variation and to assess population substructure within a cohort of HIV-positive children from Botswana-a Southern African country that is regionally underrepresented in genomic databases. Using whole-exome sequencing data from 164 Batswana and comparisons with 150 similarly sequenced HIV-positive Ugandan children, we found that 13%-25% of variation observed among Batswana was not captured by public databases. Uncaptured variants were significantly enriched (p = 2.2 × 10-16) for coding variants with minor allele frequencies between 1% and 5% and included predicted-damaging non-synonymous variants. Among variants found in public databases, corresponding allele frequencies varied widely, with Botswana having significantly higher allele frequencies among rare (<1%) pathogenic and damaging variants. Batswana clustered with other Southern African populations, but distinctly from 1000 Genomes African populations, and had limited evidence for admixture with extra-continental ancestries. We also observed a surprising lack of genetic substructure in Botswana, despite multiple tribal ethnicities and language groups, alongside a higher degree of relatedness than purported founder populations from the 1000 Genomes project. Our observations reveal a complex, but distinct, ancestral history and genomic architecture among Batswana and suggest that disease mapping within similar Southern African populations will require a deeper repository of genetic variation and allelic dependencies than presently exists.
Asunto(s)
Población Negra/genética , Secuenciación del Exoma , Variación Genética , Botswana , Estudios de Cohortes , Pool de Genes , Genética de Población , Genoma Humano , Geografía , Humanos , Filogenia , Análisis de Componente PrincipalRESUMEN
Eyeless (ey) is one of the most critical transcription factors for initiating the entire eye development in Drosophila. However, the molecular mechanisms through which Ey regulates target genes and pathways have not been characterized at the genomic level. Using ChIP-Seq, we generated an endogenous Ey-binding profile in Drosophila developing eyes. We found that Ey binding occurred more frequently at promoter compared to non-promoter regions. Ey promoter binding was correlated with the active transcription of genes involved in development and transcription regulation. An integrative analysis revealed that Ey directly regulated a broad and highly connected genetic network, including many essential patterning pathways, and known and novel eye genes. Interestingly, we observed that Ey could target multiple components of the same pathway, which might enhance its control of these pathways during eye development. In addition to protein-coding genes, we discovered Ey also targeted non-coding RNAs, which represents a new regulatory mechanism employed by Ey. These findings suggest that Ey could use multiple molecular mechanisms to regulate target gene expression and pathway function, which might enable Ey to exhibit a greater flexibility in controlling different processes during eye development.
Asunto(s)
Ojo Compuesto de los Artrópodos/embriología , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Células Fotorreceptoras de Invertebrados/fisiología , Animales , Tipificación del Cuerpo , Linaje de la Célula , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Genómica , Regiones Promotoras Genéticas , ARN no TraducidoRESUMEN
The mouse olfactory bulb (OB) features continued, activity-dependent integration of adult-born neurons, providing a robust model with which to examine mechanisms of plasticity in the adult brain. We previously reported that local OB interneurons secrete the neuropeptide corticotropin-releasing hormone (CRH) in an activity-dependent manner onto adult-born granule neurons and that local CRH signaling promotes expression of synaptic machinery in the bulb. This effect is mediated via activation of the CRH receptor 1 (CRHR1), which is developmentally regulated during adult-born neuron maturation. CRHR1 is a GS-protein-coupled receptor that activates CREB-dependent transcription in the presence of CRH. Therefore, we hypothesized that locally secreted CRH activates CRHR1 to initiate circuit plasticity programs. To identify such programs, we profiled gene expression changes associated with CRHR1 activity in adult-born neurons of the OB. Here, we show that CRHR1 activity influences expression of the brain-specific Homeobox-containing transcription factor POU Class 6 Homeobox 1 (POU6f1). To elucidate the contributions of POU6f1 toward activity-dependent circuit remodeling, we targeted CRHR1+ neurons in male and female mice for cell-type-specific manipulation of POU6f1 expression. Whereas loss of POU6f1 in CRHR1+ neurons resulted in reduced dendritic complexity and decreased synaptic connectivity, overexpression of POU6f1 in CRHR1+ neurons promoted dendritic outgrowth and branching and influenced synaptic function. Together, these findings suggest that the transcriptional program directed by POU6f1 downstream of local CRH signaling in adult-born neurons influences circuit dynamics in response to activity-dependent peptide signaling in the adult brain.SIGNIFICANCE STATEMENT Elucidating mechanisms of plasticity in the adult brain is helpful for devising strategies to understand and treat neurodegeneration. Circuit plasticity in the adult mouse olfactory bulb is exemplified by both continued cell integration and synaptogenesis. We previously reported that these processes are influenced by local neuropeptide signaling in an activity-dependent manner. Here, we show that local corticotropin-releasing hormone (CRH) signaling induces dynamic gene expression changes in CRH receptor expressing adult-born neurons, including altered expression of the transcription factor POU6f1 We further show that POU6f1 is necessary for proper dendrite specification and patterning, as well as synapse development and function in adult-born neurons. Together, these findings reveal a novel mechanism by which peptide signaling modulates adult brain circuit plasticity.
Asunto(s)
Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Neuropéptidos/fisiología , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Animales , Conducta Animal/fisiología , Hormona Liberadora de Corticotropina/fisiología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Noqueados , Neuronas/fisiología , Neuronas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/genética , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Receptores de Hormona Liberadora de Corticotropina/fisiología , Olfato/fisiologíaRESUMEN
The retina is the light sensing tissue of the eye which contains multiple layers of cells required for the detection and transmission of a visual signal. Loss of the light-sensing photoreceptors leads to defects in visual function and blindness. Previously, we found that mosaic deletion of Kcnj13, and subsequent loss of the potassium channel Kir7.1, in mice leads to photoreceptor degeneration and recapitulates the human retinal disease phenotype (Zhong et al., 2015). Kcnj13 expression in the retinal pigment epithelium (RPE) is essential for normal retinal electrophysiology, function, and survival. Mice with homozygous loss of Kcnj13 die at postnatal day 1 (P1), requiring a tissue-specific approach to study retinal degeneration phenotypes in adult mice. We used the CRISPR-Cas9 system to generate a floxed, conditional loss-of-function (cKO) Kcnj13flox allele to study the pathogenesis of Kcnj13 deficiency in the retina. To investigate if the Kcnj13 is required in the RPE for photoreceptor function and survival, we used Best1-cre, which is specifically expressed in the RPE. We observed complete loss of Kcnj13 expression in Cre-positive RPE cells. Furthermore, our findings show that widespread loss of Kcnj13 in the RPE leads to severe and progressive thinning of the outer nuclear layer and a reduced response to light. Finally, to detect Best1-cre expression in the RPE of live animals without sacrificing the animal for histology, we generated a Cre-reporter-containing Kcnj13 cKO mouse line (cKOR: Kcnj13flox/flox; Best1-cre; Ai9) which can be rapidly screened using retinal fluorescence microscopy. These findings provide new tools for studying the roles of Kcnj13 in retinal homeostasis.
Asunto(s)
Células Fotorreceptoras de Vertebrados/patología , Canales de Potasio de Rectificación Interna/fisiología , Degeneración Retiniana/patología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Proteína 9 Asociada a CRISPR , Electrorretinografía , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Fluorescente , Retina/fisiopatologíaRESUMEN
NMNAT1 (nicotinamide mononucleotide adenylyltransferase 1) encodes a rate-limiting enzyme that catalyzes the biosynthesis of NAD+ and plays a role in neuroprotection. Mutations in NMNAT1 have been identified to cause a recessive, non-syndromic early form of blindness genetically defined as Leber Congenital Amaurosis 9 (LCA9). One of the most common alleles reported so far in NMNAT1 is the c.769Gâ¯>â¯A (E257K) missense mutation, which occurs in 70% of all LCA9 cases. However, given its relatively high population frequency and the observation of individuals with homozygous E257K variant without phenotype, the pathogenicity of this allele has been questioned. To address this issue, we have studied the pathogenic effects of this allele by generating a knock-in mouse model. Interestingly, no obvious morphological or functional defects are observed in Nmnat1 E257K homozygous mice up to one year old, even after light-damage. Together with the previous clinical reports, we propose that the E257K allele is a weak hypomorphic allele that has significantly reduced penetrance in the homozygous state. In contrast, compound heterozygous Nmnat1E257K/- mice exhibit photoreceptor defects which are exacerbated upon exposure to light. Furthermore, retina tissue- specific Nmnat1 conditional knockout mice exhibit photoreceptor degeneration before the retina has terminally differentiated. These findings suggest that NMNAT1 plays an important role in photoreceptors and is likely involved in both retinal development and maintenance of photoreceptor integrity.
Asunto(s)
Variación Genética/fisiología , Amaurosis Congénita de Leber/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Degeneración Retiniana/genética , Alelos , Animales , Electrorretinografía , Exones/genética , Femenino , Técnicas de Sustitución del Gen , Amaurosis Congénita de Leber/patología , Luz , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Fenotipo , Mutación Puntual , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología , Retina/fisiopatología , Retina/efectos de la radiación , Degeneración Retiniana/patologíaRESUMEN
The mammalian retina consists of multiple cell layers including photoreceptor cells, which are light sensing neurons that play essential functions in the visual process. Previously, we identified mutations in SPATA7, encoding spermatogenesis associated protein 7, in families with Leber Congenital Amaurosis (LCA) and juvenile Retinitis Pigmentosa (RP), and showed that Spata7 null mice recapitulate the human disease phenotype of retinal degeneration. SPATA7 is expressed in the connecting cilium of photoreceptor (PR) cells in the mouse retina, as well as in retinal pigment epithelium (RPE) cells, but the functional role of Spata7 in the RPE remains unknown. To investigate whether Spata7 is required in PRs, the RPE, or both, we conditionally knocked out Spata7 in photoreceptors and RPE cells using Crx-Cre and Best1-Cre transgenic mouse lines, respectively. In Spata7 photoreceptor-specific conditional (cKO) mice, both rod and cone photoreceptor dysfunction and degeneration is observed, characterized by progressive thinning of the outer nuclear layer and reduced response to light; however, RPE-specific deletion of Spata7 does not impair retinal function or cell survival. Furthermore, our findings show that both Rhodopsin and RPGRIP1 are mislocalized in the Spata7Flox/-; Crx-Cre cKO mice, suggesting that loss of Spata7 in photoreceptors alone can result in altered trafficking of these proteins in the connecting cilium. Together, our findings suggest that loss of Spata7 in photoreceptors alone is sufficient to cause photoreceptor degeneration, but its function in the RPE is not required for photoreceptor survival; therefore, loss of Spata7 in photoreceptors alters both rod and cone function and survival, consistent with the clinical phenotypes observed in LCA and RP patients with mutations in SPATA7.
Asunto(s)
Proteínas de Unión al ADN/fisiología , Células Fotorreceptoras Retinianas Conos/patología , Degeneración Retiniana/patología , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/patología , Animales , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Electrorretinografía , Ratones , Ratones Noqueados , Proteínas/metabolismo , Retina/metabolismo , Rodopsina/metabolismoRESUMEN
Drosophila eye development is a complex process that involves many transcription factors (TFs) and interactions with their cofactors and targets. The TF Sine oculis (So) and its cofactor Eyes absent (Eya) are highly conserved and are both necessary and sufficient for eye development. Despite their many important roles during development, the direct targets of So are still largely unknown. Therefore the So-dependent regulatory network governing eye determination and differentiation is poorly understood. In this study, we intersected gene expression profiles of so or eya mutant eye tissue prepared from three different developmental stages and identified 1731 differentially expressed genes across the Drosophila genome. A combination of co-expression analyses and motif discovery identified a set of twelve putative direct So targets, including three known and nine novel targets. We also used our previous So ChIP-seq data to assess motif predictions for So and identified a canonical So binding motif. Finally, we performed in vivo enhancer reporter assays to test predicted enhancers from six candidate target genes and find that at least one enhancer from each gene is expressed in the developing eye disc and that their expression patterns overlap with that of So. We furthermore confirmed that the expression level of predicted direct So targets, for which antibodies are available, are reduced in so or eya post-mitotic knockout eye discs. In summary, we expand the set of putative So targets and show for the first time that the combined use of expression profiling of so with its cofactor eya is an effective method to identify novel So targets. Moreover, since So is highly conserved throughout the metazoa, our results provide the basis for future functional studies in a wide variety of organisms.
Asunto(s)
Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas del Ojo/fisiología , Regulación del Desarrollo de la Expresión Génica , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Inmunoprecipitación de Cromatina , Ojo Compuesto de los Artrópodos/ultraestructura , Secuencia de Consenso , Drosophila melanogaster/crecimiento & desarrollo , Ontología de Genes , Estudios de Asociación Genética , Discos Imaginales/metabolismo , Larva , Pupa , ARN Mensajero/genética , Transcripción Genética , TranscriptomaRESUMEN
Skin lightening among Eurasians is thought to have been a convergence occurring independently in Europe and East Asia as an adaptation to high latitude environments. Among Europeans, several genes responsible for such lightening have been found, but the information available for East Asians is much more limited. Here, a genome-wide comparison between dark-skinned Africans and Austro-Asiatic speaking aborigines and light-skinned northern Han Chinese identified the pigmentation gene OCA2, showing unusually deep allelic divergence between these groups. An amino acid substitution (His615Arg) of OCA2 prevalent in most East Asian populations-but absent in Africans and Europeans-was significantly associated with skin lightening among northern Han Chinese. Further transgenic and targeted gene modification analyses of zebrafish and mouse both exhibited the phenotypic effect of the OCA2 variant manifesting decreased melanin production. These results indicate that OCA2 plays an important role in the convergent skin lightening of East Asians during recent human evolution.
Asunto(s)
Pueblo Asiatico/genética , Proteínas de Transporte de Membrana/genética , Pigmentación de la Piel/genética , Adolescente , Alelos , Sustitución de Aminoácidos , Evolución Biológica , Población Negra/genética , Niño , Etnicidad/genética , Evolución Molecular , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética/métodos , Variación Genética , Genética de Población/métodos , Haplotipos , Humanos , Masculino , Proteínas de Transporte de Membrana/sangre , Proteínas de Transporte de Membrana/metabolismo , Polimorfismo de Nucleótido Simple , Selección Genética , Pigmentación de la Piel/fisiología , Población Blanca/genética , Adulto JovenRESUMEN
Leber congenital amaurosis (LCA) and juvenile retinitis pigmentosa (RP) are severe hereditary diseases that causes visual impairment in infants and children. SPATA7 has recently been identified as the LCA3 and juvenile RP gene in humans, whose function in the retina remains elusive. Here, we show that SPATA7 localizes at the primary cilium of cells and at the connecting cilium (CC) of photoreceptor cells, indicating that SPATA7 is a ciliary protein. In addition, SPATA7 directly interacts with the retinitis pigmentosa GTPase regulator interacting protein 1 (RPGRIP1), a key connecting cilium protein that has also been linked to LCA. In the retina of Spata7 null mutant mice, a substantial reduction of RPGRIP1 levels at the CC of photoreceptor cells is observed, suggesting that SPATA7 is required for the stable assembly and localization of the ciliary RPGRIP1 protein complex. Furthermore, our results pinpoint a role of this complex in protein trafficking across the CC to the outer segments, as we identified that rhodopsin accumulates in the inner segments and around the nucleus of photoreceptors. This accumulation then likely triggers the apoptosis of rod photoreceptors that was observed. Loss of Spata7 function in mice indeed results in a juvenile RP-like phenotype, characterized by progressive degeneration of photoreceptor cells and a strongly decreased light response. Together, these results indicate that SPATA7 functions as a key member of a retinal ciliopathy-associated protein complex, and that apoptosis of rod photoreceptor cells triggered by protein mislocalization is likely the mechanism of disease progression in LCA3/ juvenile RP patients.
Asunto(s)
Proteínas de Unión al ADN/metabolismo , Cilio Conector de los Fotorreceptores/patología , Proteínas/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Animales , Apoptosis , Bovinos , Proteínas del Citoesqueleto , Proteínas de Unión al ADN/genética , Eliminación de Gen , Humanos , Ratones , Ratones Mutantes , Cilio Conector de los Fotorreceptores/metabolismo , Transporte de Proteínas , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Rodopsina/metabolismoRESUMEN
PURPOSE: The Collaborative African Genomics Network (CAfGEN) aims to establish sustainable genomics research programs in Botswana and Uganda through long-term training of PhD students from these countries at Baylor College of Medicine. Here, we present an overview of the CAfGEN PhD training program alongside trainees' perspectives on their involvement. BACKGROUND: Historically, collaborations between high-income countries (HICs) and low- and middle-income countries (LMICs), or North-South collaborations, have been criticized for the lack of a mutually beneficial distribution of resources and research findings, often undermining LMICs. CAfGEN plans to address this imbalance in the genomics field through a program of technology and expertise transfer to the participating LMICs. METHODS: An overview of the training program is presented. Trainees from the CAfGEN project summarized their experiences, looking specifically at the training model, benefits of the program, challenges encountered relating to the cultural transition, and program outcomes after the first 2 years. CONCLUSION: Collaborative training programs like CAfGEN will not only help establish sustainable long-term research initiatives in LMICs but also foster stronger North-South and South-South networks. The CAfGEN model offers a framework for the development of training programs aimed at genomics education for those for whom genomics is not their "first language." Genet Med advance online publication 06 April 2017.
Asunto(s)
Educación de Postgrado/métodos , Educación/métodos , Genómica/educación , Investigación Biomédica/educación , Investigación Biomédica/métodos , Botswana , Biología Computacional/educación , Curriculum , Femenino , Humanos , Cooperación Internacional , Masculino , Estudiantes , Uganda , UniversidadesRESUMEN
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.
Asunto(s)
Empalme Alternativo/genética , Oído Interno/crecimiento & desarrollo , Proteínas de Unión al ARN/genética , Receptores Notch/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Cóclea/crecimiento & desarrollo , Cóclea/patología , Oído Interno/metabolismo , Oído Interno/patología , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/patología , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1 , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Factores de Empalme de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Serrate-Jagged , Transducción de Señal/genética , Vestíbulo del Laberinto/crecimiento & desarrollo , Vestíbulo del Laberinto/patologíaRESUMEN
Organ development is directed by selector gene networks. Eye development in the fruit fly Drosophila melanogaster is driven by the highly conserved selector gene network referred to as the "retinal determination gene network," composed of approximately 20 factors, whose core comprises twin of eyeless (toy), eyeless (ey), sine oculis (so), dachshund (dac), and eyes absent (eya). These genes encode transcriptional regulators that are each necessary for normal eye development, and sufficient to direct ectopic eye development when misexpressed. While it is well documented that the downstream genes so, eya, and dac are necessary not only during early growth and determination stages but also during the differentiation phase of retinal development, it remains unknown how the retinal determination gene network terminates its functions in determination and begins to promote differentiation. Here, we identify a switch in the regulation of ey by the downstream retinal determination genes, which is essential for the transition from determination to differentiation. We found that central to the transition is a switch from positive regulation of ey transcription to negative regulation and that both types of regulation require so. Our results suggest a model in which the retinal determination gene network is rewired to end the growth and determination stage of eye development and trigger terminal differentiation. We conclude that changes in the regulatory relationships among members of the retinal determination gene network are a driving force for key transitions in retinal development.
Asunto(s)
Diferenciación Celular/genética , Drosophila melanogaster/crecimiento & desarrollo , Ojo/crecimiento & desarrollo , Organogénesis/genética , Retina/crecimiento & desarrollo , Animales , Secuencia Conservada , Proteínas de Unión al ADN , Drosophila melanogaster/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , RetinaldehídoRESUMEN
optix, the Drosophila ortholog of the SIX3/6 gene family in vertebrate, encodes a homeodomain protein with a SIX protein-protein interaction domain. In vertebrates, Six3/6 genes are required for normal eye as well as brain development. However, the normal function of optix in Drosophila remains unknown due to lack of loss-of-function mutation. Previous studies suggest that optix is likely to play an important role as part of the retinal determination (RD) network. To elucidate normal optix function during retinal development, multiple null alleles for optix have been generated. Loss-of-function mutations in optix result in lethality at the pupae stage. Surprisingly, close examination of its function during eye development reveals that, unlike other members of the RD network, optix is required only for morphogenetic furrow (MF) progression, but not initiation. The mechanisms by which optix regulates MF progression is likely through regulation of signaling molecules in the furrow. Specifically, although unaffected during MF initiation, expression of dpp in the MF is dramatically reduced in optix mutant clones. In parallel, we find that optix is regulated by sine oculis and eyes absent, key members of the RD network. Furthermore, positive feedback between optix and sine oculis and eyes absent is observed, which is likely mediated through dpp signaling pathway. Together with the observation that optix expression does not depend on hh or dpp, we propose that optix functions together with hh to regulate dpp in the MF, serving as a link between the RD network and the patterning pathways controlling normal retinal development.
Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Proteínas de Homeodominio/metabolismo , Retina/embriología , Factores de Transcripción/metabolismo , Alelos , Animales , Tipificación del Cuerpo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Mutación , Células Fotorreceptoras de Invertebrados/metabolismo , Transducción de SeñalRESUMEN
In vitro data suggest that the human RbAp46 and RbAp48 genes encode proteins involved in multiple chromatin remodeling complexes and are likely to play important roles in development and tumor suppression. However, to date, our understanding of the role of RbAp46/RbAp48 and its homologs in metazoan development and disease has been hampered by a lack of insect and mammalian mutant models, as well as redundancy due to multiple orthologs in most organisms studied. Here, we report the first mutations in the single Drosophila RbAp46/RbAp48 homolog Caf1, identified as strong suppressors of a senseless overexpression phenotype. Reduced levels of Caf1 expression result in flies with phenotypes reminiscent of Hox gene misregulation. Additionally, analysis of Caf1 mutant tissue suggests that Caf1 plays important roles in cell survival and segment identity, and loss of Caf1 is associated with a reduction in the Polycomb Repressive Complex 2 (PRC2)-specific histone methylation mark H3K27me3. Taken together, our results suggest suppression of senseless overexpression by mutations in Caf1 is mediated by participation of Caf1 in PRC2-mediated silencing. More importantly, our mutant phenotypes confirm that Caf1-mediated silencing is vital to Drosophila development. These studies underscore the importance of Caf1 and its mammalian homologs in development and disease.
Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Drosophila/genética , Proteína 4 de Unión a Retinoblastoma/genética , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Tipificación del Cuerpo/genética , Supervivencia Celular/genética , Drosophila/metabolismo , Epigénesis Genética , Ojo/crecimiento & desarrollo , Genes Homeobox , Genes de Insecto , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Modelos Biológicos , Mutación , Proteínas Nucleares/genética , Fenotipo , Complejo Represivo Polycomb 1 , Transducción de Señal , Factores de Transcripción/genéticaRESUMEN
Rare cell populations can be challenging to characterize using microfluidic single-cell RNA sequencing (scRNA-seq) platforms. Typically, the population of interest must be enriched and pooled from multiple biological specimens for efficient collection. However, these practices preclude the resolution of sample origin together with phenotypic data and are problematic in experiments in which biological or technical variation is expected to be high (e.g., disease models, genetic perturbation screens, or human samples). One solution is sample multiplexing whereby each sample is tagged with a unique sequence barcode that is resolved bioinformatically. We have established a scRNA-seq sample multiplexing pipeline for mouse retinal ganglion cells using cholesterol-modified-oligos and utilized the enhanced precision to investigate cell type distribution and transcriptomic variance across retinal samples. As single cell transcriptomics are becoming more widely used to research development and disease, sample multiplexing represents a useful method to enhance the precision of scRNA-seq analysis.
RESUMEN
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity by characterizing cell types across tissues and species. While several mouse retinal scRNA-seq datasets exist, each dataset is either limited in cell numbers or focused on specific cell classes, thereby hindering comprehensive gene expression analysis across all retina types. To fill the gap, we generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse retinas, enriched for rare population cells via antibody-based magnetic cell sorting. Integrating this dataset with public datasets, we constructed the Mouse Retina Cell Atlas (MRCA) for wild-type mice, encompassing over 330,000 cells, characterizing 12 major classes and 138 cell types. The MRCA consolidates existing knowledge, identifies new cell types, and is publicly accessible via CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal, providing a user-friendly resource for the mouse retina research community.
RESUMEN
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity at the single-cell resolution by classifying and characterizing cell types in multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have been published, each dataset either has a relatively small number of cells or is focused on specific cell classes, and thus is suboptimal for assessing gene expression patterns across all retina types at the same time. To establish a unified and comprehensive reference for the mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was generated through the targeted enrichment of rare population cells via antibody-based magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell types. It captured consensus cell type characterization from public datasets and identified additional new cell types. To facilitate the public use of the MRCA, we have deposited it in CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data resource for the mouse retina communities.